# Ⅱ. 干渉

1

<u>光波の重ね合わせ</u>

第1章にて単一の平面波の強度について述べた。 ここでは、2つの同一周波数の平面波の合成光の強度を考える。

光波1  
光波2  
**E** = **E**<sub>1</sub> + **E**<sub>2</sub> = 
$$(E_{1x} + E_{2x}, E_{1y} + E_{2y})e^{-i\omega t}$$

合成波の光強度 / は、

$$I = |\mathbf{E}|^{2} = |E_{1x} + E_{2x}|^{2} + |E_{1y} + E_{2y}|^{2}$$
  
=  $|E_{1x}|^{2} + |E_{2x}|^{2} + 2\operatorname{Re}[E_{1x}E_{2x}^{*}] + |E_{1y}|^{2} + |E_{2y}|^{2} + 2\operatorname{Re}[E_{1y}E_{2y}^{*}]$   
$$= A^{2} + ABe^{i(\alpha - \beta)} + ABe^{-i(\alpha - \beta)} + B^{2}$$
  
=  $A^{2} + B^{2} + 2AB\cos(\alpha - \beta)$   
=  $|Ae^{i\alpha}|^{2} + |Be^{i\beta}|^{2} + 2\operatorname{Re}[Ae^{i\alpha} \times Be^{-i\beta}]$   
$$= Ae^{i\alpha}|^{2} + |Be^{i\beta}|^{2} + 2\operatorname{Re}[Ae^{i\alpha} \times Be^{-i\beta}]$$

$$= |\mathbf{E}_{1}|^{2} + |\mathbf{E}_{2}|^{2} + 2\operatorname{Re}[(\mathbf{E}_{1} \cdot \mathbf{E}_{2}^{*})]$$

◆ 合成光強度は、(各強度の和)+(干渉項)。

◆ 干渉項は偏波状態に依存。 同一偏波状態の時に最大。直交しているとゼロ。

各光波の偏波状態を次のように表す。  $E_{1} = (E_{1x}, E_{1y}) = A_{1}(a_{1x}, a_{1y}e^{i\Delta_{1}}) \qquad E_{2} = (E_{2x}, E_{2y}) = A_{2}(a_{2x}, a_{2y}e^{i\Delta_{2}})$   $(0 \le \theta \le \frac{\pi}{2})$   $(0 \le \theta \le \frac{\pi}{2})$   $(0 \le \theta \le \frac{\pi}{2})$   $(1 \le \theta \le \frac{\pi}{2})$  (

- 渉項

以降では、同一偏波状態を前提とし、電場をスカラー量で表す。

次に、異なる周波数/同一偏波の2つの平面波の合波光を考える。

光波1(
$$\omega_1$$
)  
光波2( $\omega_2$ )  
光波2( $\omega_2$ )

合成光強度は、

$$|E|^{2} = |a_{1}e^{i(-\omega_{1}t+\varphi_{1})} + a_{2}e^{i(-\omega_{2}t+\varphi_{2})}|^{2} = a_{1}^{2} + a_{2}^{2} + 2\operatorname{Re}[a_{1}a_{2}e^{i\{(-\omega_{1}t+\varphi_{1})-(-\omega_{2}t+\varphi_{2})\}}]$$
$$= a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}\cos\left[(\omega_{1}-\omega_{2})t - (\varphi_{1}-\varphi_{2})\right]$$

◆干渉項は差周波数で振動(ビート振動、または、うなり)

光検出器の応答速度が差周波振動に追従できないと、平均値しか測定できない。 よって、干渉項=ゼロ→2光波の周波数差が大きいと干渉現象は観測されない。

ヤングの干渉



スリット間隔は狭く、また光源から十分離れているとして、近似的に平面波と見做す。

 $E(L) = A(0) \exp[i(kL - \omega t)]$  (L:光源から観測点までの距離)

スクリーン上では、Aを通った光とBを通った光が重なる。

$$E = Ae^{i(kL_{a} - \omega t)} + Ae^{i(kL_{b} - \omega t)}$$
  
ムを通った光 Bを通った光

 $egin{pmatrix} L_{
m a}: 光源-スリットA-スクリーン間の距離 \ L_{
m b}: 光源-スリットB-スクリーン間の距離 \end{pmatrix}$ 

全強度は、

$$I = \left| Ae^{i(kL_{a} - \omega t)} + Ae^{i(kL_{b} - \omega t)} \right|^{2} = \left| A \right|^{2} \{ 1 + 1 + 2\cos[k(L_{a} - L_{b})] \} = 2\left| A \right|^{2} \{ 1 + \cos[k(L_{a} - L_{b})] \}$$

伝搬光路差に応じて正弦波状に変化



$$\sqrt{x^2 + (y - h/2)^2} - \sqrt{x^2 + (y + h/2)^2} \approx x\{1 + \frac{1}{2}(\frac{y - h/2}{x})^2\} - x\{1 + \frac{1}{2}(\frac{y + h/2}{x})^2\} = -\frac{yh}{x}$$

$$I \propto 1 + \cos\left[k\left(\sqrt{x^2 + (y - \frac{h}{2})^2} - \sqrt{x^2 + (y + \frac{h}{2})^2}\right)\right]$$
$$\approx 1 + \cos\left(-\frac{kh}{x}y\right) = 1 + \cos\left(\frac{kh}{x}y\right) = 1 + \cos\left(2\pi\frac{nfh}{cx}y\right)$$
$$\left(k = \frac{2\pi nf}{c}\right)$$

スクリーン上には、正弦波状の干渉縞。

但し、以上は光はスリット透過後に均等に回り込むとした話。 実際には、中心付近が大きいので、cosに包絡線が掛け合わされたパターンとなる。 なお、縞の間隔は、スリット間隔 h、スクリーンまでの距離 x、光周波数 f、などに依存。

♦··-··

<u>マッハツェンダ干渉計</u> Mach-Zehnder Interferometer

元々は、媒質の屈折率などを測る光計測系。

光の変調・制御・合分波など、各種光デバイスに応用されている。



HM:ハーフミラー 入射光の一部を反射、残りを透過させる 光学素子。

 $E_{out1}$ は、HM1透過 $\rightarrow$ M1全反射 $\rightarrow$ HM2反射、を経た光と HM1反射 $\rightarrow$ M2全反射 $\rightarrow$ HM2透過、を経た光の合成。 HM1透過→M1全反射→HM2反射、を経た光は、

ー方、
$$E_{out2}$$
は、HM1透過 $\rightarrow$ M1全反射 $\rightarrow$ HM2透過、を経た光と  
HM1反射 $\rightarrow$ M2全反射 $\rightarrow$ HM2反射、を経た光の合成光。

$$E_{\text{out2}} = \sqrt{T_1 T_2} e^{ikL_1} E_{\text{in}} + \sqrt{R_1 R_2} e^{i(kL_2 + \pi/2 + \pi/2)} E_{\text{in}}$$
$$= (\sqrt{T_1 T_2} + \sqrt{R_1 R_2} e^{i(k\Delta L + \pi)}) e^{ikL_1} E_{\text{in}}$$

以上より、出力光強度は、

$$\begin{cases} I_{\text{out1}} = \left| E_{\text{out1}} \right|^{2} = \left| (\sqrt{T_{1}R_{2}} + \sqrt{R_{1}T_{2}}e^{ik\Delta L})e^{i(kL_{1}+\pi/2)}E_{\text{in}} \right|^{2} \\ = \left| \sqrt{T_{1}R_{2}} + \sqrt{R_{1}T_{2}}e^{ik\Delta L} \right|^{2} |E_{\text{in}}|^{2} \\ = \left| T_{1}R_{2} + R_{1}T_{2} + 2\sqrt{T_{1}R_{1}T_{2}R_{2}}\cos(k\Delta L) \right|^{2} I_{\text{in}} \\ I_{\text{out2}} = \left| E_{\text{out2}} \right|^{2} = \left| (\sqrt{T_{1}T_{2}} + \sqrt{R_{1}R_{2}}e^{i(k\Delta L+\pi)})e^{ikL_{1}}E_{\text{in}} \right|^{2} \\ = \left| T_{1}T_{2} + R_{1}R_{2} - 2\sqrt{T_{1}R_{1}T_{2}R_{2}}\cos(k\Delta L) \right|^{2} I_{\text{in}} \end{cases}$$

強度透過率は、

$$\begin{cases} T_{\text{out1}} \equiv \frac{I_{\text{out1}}}{I_{\text{in}}} = T_1 R_2 + R_1 T_2 + 2\sqrt{T_1 R_1 T_2 R_2} \cos(k\Delta L) \\ T_{\text{out2}} \equiv \frac{I_{\text{out2}}}{I_{\text{in}}} = T_1 T_2 + R_1 R_2 - 2\sqrt{T_1 R_1 T_2 R_2} \cos(k\Delta L) \end{cases}$$

k△Lに正弦波状に依存

4

#### ちなみに出力強度の合計は、

(T + R = 1)

エネルギー保存

5

干渉現象では位相関係によって光強度が強くなったり弱くなったりするが、必ずどこかに相 補的な出口(反作用)があり、過剰損失がなければ全強度は一定。

強度透過率の最大値/最小値はハーフミラーの透過率に依存する。

HM1とHM2が同じ特性( $T_1 = T_2 \equiv T, R_1 = R_2 \equiv R$ )の場合:

 $I_{\text{out1}} + I_{\text{out2}} = (T_1T_2 + R_1R_2 + T_1R_2 + R_1T_2)I_{\text{in}} = (T_1 + R_1)(T_2 + R_2)I_{\text{in}} = I_{\text{in}}$ 

$$\begin{cases} T_{out1} = 2TR\{1 + \cos(k\Delta L)\} = 2R(1 - R)\{1 + \cos(k\Delta L)\} \\ T_{out2} = T^2 + R^2 - 2TR\cos(k\Delta L) & 1 \\ \hline T_{out2} = T^2 + R^2 - 2TR\cos(k\Delta L) & 1 \\ \hline T_{out1} = 0.5\{1 + \cos(k\Delta L)\} \\ T_{out1} = 0.5\{1 + \cos(k\Delta L)\} \\ T_{out2} = 0.5\{1 - \cos(k\Delta L)\} \end{cases}$$

分岐比が非対称 $(T \neq R)$ だと、



出力1は最大でも100%透過とならない。 出力2は最小でもゼロとはならない。

透過率がkΔLによって変化するのは、2つの経路を経た光が強めあったり弱めあったりするため。 同位相なら強め合い、逆位相(πシフト or 半波長シフト)なら弱め合う。



出力1では、 $k\Delta L = 0$ の時に同位相  $\rightarrow$  強め合い、 $k\Delta L = \pi$ の時に逆位相  $\rightarrow$  弱め合い。 出力2では、 $k\Delta L = 0$ の時に逆位相  $\rightarrow$  弱め合い、 $k\Delta L = \pi$ の時に同位相  $\rightarrow$ 強め合い。

(位相が半周期ずれるのはHM透過/反射でのπ/2位相シフトに起因)

HM分岐比が非対称の場合に完全に干渉しない(最大値 ≠ 1、最小値 ≠ 0)なのは、 2経路光の振幅が均等ではなくなるため。



2光波の位相差は、光路長差、屈折率、波長(光周波数)、に依存。

2光波の位相差:  $k\Delta L = n \frac{2\pi}{2} \Delta L = n \frac{2\pi f}{2} \Delta L$  $(n: 屈折率, \lambda: 波長, f: 光周波数)$ なので、  $(\Delta L, n: 固定)$  $(\Delta L, f: 固定)$ (*n*, *f*:固定) 透過率 透過率 透過率 光路長差 ΔL 屈折率 n 光周波数 f

正弦波の周期は固定とした他のパラメータに依存。

1周期分の光路長差 $d(\Delta L): kd(\Delta L) = 2\pi \rightarrow n \frac{2\pi f}{c} d(\Delta L) = 2\pi \rightarrow d(\Delta L) = \frac{c}{nf}$  $dn \frac{2\pi f}{c} \Delta L = 2\pi \rightarrow dn = \frac{c}{f \Delta L}$ 1周期分の屈折率変化*dn*: 1周期分の周波数変化df:  $n\frac{2\pi df}{c}\Delta L = 2\pi \rightarrow df = \frac{c}{n\Delta L}$ 

6

以上の特性は光デバイスとして様々に利用されている。

光強度変調器:干渉計の一方の経路に電圧により屈折率が変化する媒質を配置する。 印加電圧により屈折李変化→透過率変化→強度変調

光周波数フィルター:入射光周波数によって出力されるポートが異なる。 例えば、 $f_1$ は出力1へ、 $f_2$ は出力2へ  $\rightarrow f_1 \geq f_2$ を分離するフィルター

位相差測定: 2つの光路長に差をつけて、入射時刻の異なる光を干渉させる。 位相差0なら出力1へ、位相差πなら出力2へ → 位相差測定

## <u>マイケルソン干渉計</u>



出力光 $E_{out}$ は、M1を反射してきた光とM2を反射してきた光の足し合わせ。経路を辿ると、

M1からの反射光は、

$$E_{\rm in} \rightarrow rE_{\rm in} \rightarrow rE_{\rm in} e^{i2kL_{\rm l}} \rightarrow trE_{\rm in} e^{i2kL_{\rm l}}$$

M2からの反射光は、

$$E_{\rm in} \rightarrow t E_{\rm in} \rightarrow t E_{\rm in} e^{i2kL_2} \rightarrow r t E_{\rm in} e^{i2kL_2}$$

よって出力光は、

$$E_{\text{out}} = trE_{\text{in}}e^{i2kL_1} + rtE_{\text{in}}e^{i2kL_2} = tr(1 + e^{i2k\Delta L})e^{i2kL_1}E_{\text{in}} \qquad \left(\Delta L \equiv L_2 - L_1\right)$$
$$I_{\text{out}} = \left|E_{\text{out}}\right|^2 = 2TR\{1 + \cos(2k\Delta L)\}I_{\text{in}}$$

2光波の位相差に応じて正弦波状の出力特性。相補的な出力は入力方向へ逆伝播。

ファブリペロー干渉計 (または、ファブリペロー共振器)



透過光電場: 
$$E_{\rm T} = t^2 E_{\rm in} e^{ikL} + t(ir)^2 t E_{\rm in} e^{3ikL} + t(ir)^4 t E_{\rm in} e^{5ikL} + \cdots$$
  
=  $t^2 E_{\rm in} e^{ikL} \{1 - r^2 e^{2i\Delta} + r^4 e^{4i\Delta} - \cdots\} = T E_{\rm in} e^{ikL} \cdot \frac{1}{1 + R e^{2i\Delta}}$   $\left(\Delta \equiv kL + \pi/2\right)$ 

透過光強度:  $I_{\rm T} = |E_{\rm T}|^2 = \frac{T^2}{1 + R^2 + 2R\cos(2\Delta)} |E_{\rm in}|^2 = \frac{(1-R)^2}{1 + R^2 + 2R\cos(2\Delta)} |E_{\rm in}|^2$ 



透過率は{R, k, L} に依存

◆ kLに対して周期的 → 屈折率、光周波数、ミラー間隔に対して周期的

◆  $(kL + \pi/2)$  がπの整数倍のときに透過率=1(すべて透過)  $2 (kL + \pi/2)$ はミラー間を1往復したときに付け加わる位相。

これが2πの整数倍だと透過率最大→各透過光の位相が全て揃っていると透過率最大 ◆ ピーク幅/消光比は HM反射率R に依存

反射率が高いと急峻な透過特性

なお、透過率を光周波数の関数としてみたときのピーク間の周波数差をFree Spectral Range (FSR)という。  $FSR = \frac{c}{2nL}$ 

一方、反射光については、

反射光電場: 
$$E_{\rm R} = (ir)E_{\rm in} + t(ir)tE_{\rm in}e^{2ikL} + t(ir)^{3}tE_{\rm in}e^{4ikL} + \cdots$$
  
 $= \sqrt{R}E_{\rm in}e^{i\pi/2} + \sqrt{TRT}E_{\rm in}e^{i(2kL+\pi/2)} \cdot \frac{1}{1-Re^{2i\Delta}} = \frac{\sqrt{R} - \sqrt{R}(R-T)e^{i2kL}}{1-Re^{2i\Delta}}E_{\rm in}e^{i\pi/2}$   
反射光強度:  $|E_{\rm R}|^{2} = \left|\frac{\sqrt{R} - \sqrt{R}(R-T)e^{i2kL}}{1-Re^{2i\Delta}}\right|^{2} |E_{\rm in}|^{2} = \frac{4R\sin^{2}(\Delta)}{(1-R)^{2} + 4R\sin^{2}(\Delta)} |E_{\rm in}|^{2}$   
強度反射率:  $\frac{|E_{\rm R}|^{2}}{|E_{\rm in}|^{2}} = \frac{4R\sin^{2}(\Delta)}{(1-R)^{2} + 4R\sin^{2}(\Delta)}$   
透過特性と上下対称形  
の  
*R* = 0.5  
*R* = 0.2  
*kL* + *φ*,

反射率+透過率、を計算してみると、

$$\frac{(1-R)^2}{(1-R)^2 + 4R\sin^2(kL+\phi)} + \frac{4R\sin^2(kL+\phi)}{(1-R)^2 + 4R\sin^2(kL+\phi)} = 1$$
  
エネルギー保存

以上の特性は様々に応用されている。

薄膜コーティング: 物体表面に薄膜を形成を反射を無くしたり、大きくしたり。 光周波数フィルター:特性の周波数光だけを抜き出すデバイス。 光周波数基準: 透過周波数が周期的なことを利用して光周波数基準として用いる。 光スペクトル測定器(走査型ファイブリペロー):

ミラーを周期的に挿引し、透過光観測より周波数スペクトルを観る。

#### 薄膜干涉

平行平板の媒質(or 薄膜)に光を入射すると、入射光は空気/基盤との境界面で多重反射する。



ここで、*t*<sub>12</sub>、*t*<sub>21</sub>、*r*<sub>12</sub>、*r*<sub>21</sub>について



9

一方、反射光は、

反射光電場:  $E_{\rm R} = r_{12}E_{\rm in} + t_{12}r_{21}t_{21}E_{\rm in}e^{2i\delta} + t_{12}r_{21}^3t_{21}E_{\rm in}e^{4i\delta} + \cdots$ 

ちなみに、透過光強度+反射光強度は、

$$|E_{\rm T}|^2 + |E_{\rm R}|^2 = \frac{(1-R)^2}{(1-R)^2 + 4R\sin^2(\delta)} |E_{\rm in}|^2 + \frac{4R\sin^2(\delta)}{(1-R)^2 + 4R\sin^2(\delta)} |E_{\rm in}|^2 = |E_{\rm in}|^2$$

ここで、透過光と反射光の位相関係をみてみる。

透過光: 
$$E_{\rm T} = \frac{t_{12}t_{21}e^{i\delta}}{1-r_{21}^2e^{2i\delta}}E_{\rm in} = \frac{(1-r_{12}r_{21})e^{i\delta}}{1-r_{21}^2e^{i2\delta}}E_{\rm in} = \frac{(1+r_{21}^2)e^{i\delta}}{1-r_{21}^2e^{2i\delta}}E_{\rm in}$$
  $\begin{pmatrix} t_{12}t_{21}-r_{12}r_{21}=1 \end{pmatrix}$ 

反射光: 
$$E_{\rm r} = \frac{r_{12} + r_{21}e^{2i\delta}}{1 - r_{21}^2 e^{2i\delta}} E_{\rm in} = \frac{r_{21}(e^{2i\delta} - 1)}{1 - r_{21}^2 e^{2i\delta}} E_{\rm in} = \frac{r_{21}e^{i\delta}(e^{i\delta} - e^{-i\delta})}{1 - r_{21}^2 e^{2i\delta}} E_{\rm in} = \frac{r_{21}e^{i\delta}2i\sin\delta}{1 - r_{21}^2 e^{2i\delta}} E_{\rm in}$$
  
$$= i\frac{2r_{21}\sin\delta}{(1 + r_{21}^2)} E_{\rm T} = \frac{e^{i\pi/2}}{(1 + r_{21}^2)} E_{\rm T}$$
  
透過光と反射光は位相が\pi/2シフト

以上の特性は、光の透過・反射の制御に利用されている。

強度透過率·反射率はミラー反射率R及び伝搬位相δに依存。



これを利用すると、任意の透過率・反射率を設計することができる。 但し、入射光波長に依存。また、周期的。

(そこで)

異なる媒質を多層に重ねて、波長依存性を(ある程度)任意に設計。



基本的には、干渉し合う光波の数を増やして干渉パターンを制御しようというコンセプト。 フーリエ級数展開の項数を増やすと、任意の関数形に近づくのと類似。







多重スリット干渉(透過型回折格子)

ヤングの干渉計を拡張する。



スクリーン上の光は、多数のスリットを 通ってきた光の合成波

光電場@スクリーン  

$$E = A \sum_{j}^{N} e^{ikL_{j}} = A e^{ikL_{0}} \frac{1 - e^{ikN\Delta L}}{1 - e^{ik\Delta L}} = A e^{ikL_{0}} \frac{e^{ikN\Delta L/2}}{e^{ik\Delta L/2}} \cdot \frac{e^{-ikN\Delta L/2} - e^{ikN\Delta L/2}}{e^{-ik\Delta L/2} - e^{ik\Delta L/2}}$$

$$= A e^{ikL_{0}} \frac{e^{ikN\Delta L/2}}{e^{ik\Delta L/2}} \cdot \frac{\sin[kN\Delta L/2]}{\sin[k\Delta L/2]}$$

$$= A e^{ikL_{0}} \frac{e^{-iNk(h/x)y/2}}{e^{-ik(h/x)y/2}} \cdot \frac{\sin[kN(h/x)y/2]}{\sin[k(h/x)y/2]}$$

$$\left(\Delta L = L_{j+1} - L_{j} = \sqrt{x^{2} + (y - \frac{h}{2})^{2}} - \sqrt{x^{2} + (y + \frac{h}{2})^{2}} \approx -\frac{yh}{x}\right)$$
  
光強度:  $I = |E|^{2} = |A|^{2} \frac{\sin^{2}[kN(h/x)y/2]}{\sin^{2}[k(h/x)y/2]}$ 

スクリーン上の光強度はy方向に周期的に変化





◆ピークの幅はスリット数(=重なり合う光の数)で決まる。

スリット数大 → 狭帯域

◆ピーク間隔はスリット幅h、距離x、で決まる。

(h/x)小  $\rightarrow$  広いピーク間隔

◆ピーク位置は伝播定数kに依存=光の波長に依存



回折格子(反射型)

周期的に溝を彫り込んだ平面板に平面波を入射する



### 演習問題

- [2.1] 波長差が0.1nmである波長が1.5µm近傍の2光波を同一偏波状態で足し合わせると、全強度は時間的に振動する(ビート振動)。
- (a) ビート振動の周波数はいくらか。但し、光速=3×10<sup>8</sup> m/s とする。
- (b) 2光波の強度比が1:4の場合の振動の最大値と最小値の比(消光比)はいくらか。
- [2.2] 同一周波数かつ同一強度の2つの光波を、右図のようにハーフミラーHM で合波する。E<sub>1</sub>の側にはくさび形状のガラスが置かれ、光経路に垂直な方向に スライドするようになっている。
- (a) E<sub>2</sub>の偏波状態を右斜め45度直線偏波としたうえでくさびガラスをスライドさせたところ、合波光強度は一定のままであった。この時のE<sub>1</sub>の偏波状態を、E<sub>1</sub>の強度*I*1を用いた式で表せ。
- (b) E2の偏波状態を横直線偏波に設定したうえでくさびガラスをスライドさせたところ、合波光強度は周期的に変化し、その最大値と最小値の比は2:1であった。この時のE1の偏波状態を右斜め直線偏波とすると、 その傾き角はいくらか。
- [2.3] 同じ強度のN波の光が同位相で足し合わさった場合とランダムな位相関係で足し合わさった場合の 合成波の強度比はいくらか。導出過程も記すこと。ただし、Nは十分大きい数とする。
- [2.4] 右図のように、2枚のハーフミラーHM(強度透過率T)と、斜辺が全反射 となっている直角二等辺三角形状のガラス媒質を用いて干渉計を構成する。 ガラス媒質は入射光方向にスライドするようになっている。この構成に対し、 端子①から波長λの光を入力する。
- (a) ガラス媒質をスライドさせると、出力光強度は周期的に変化する。一周期 分の移動距離を上記のパラメータで表せ。
- (b) ガラス媒質を固定したまま波長を変化させると、出力光強度は周期的に変化する。一周期分の波長差を表せ。但し、干渉計の2つ経路長差をALとする。



- (d) 上記出力変化において、端子③への最小出力強度は入力光強度の1/9であった。このときのHMの透過率を表せ。
- [2.5] 図のように、ハーフミラーHM(強度反射率R)と全反射ミラーMを一辺の長さLの正方形状に配置し、 正方形の一辺に強度透過率Tの損失媒質を挿入する。この構成に対し、INから周波数fの光を入力する。
  - (a)OUTへの強度透過率を{*f*, *R*, *T*, *L*, 光速*c*}で表せ。
  - (b) 周波数fを変化させると出力光強度が周期的に変化する。一周期 分の周波数差を表せ。
- (c) 上記周期変化において、出力光強度が最大値の1/2となる周波数 幅を表せ。







 $\mathbf{E}_2$