
1II. Fundamentals of quantum optics
Various optical quantum properties originate from the fact that the light energy is discrete and 
there is the minimum unit of the energy, which is called “photon.” 
This chapter introduces the fundamentals of quantum mechanics for the following chapters. 

Schrödinger’s cat

determined

or

？

●●
●

●

●●
●

Suppose that we put a cat into a box with a poison food and then seal the box. The poison is so strong 
that one bite instantly kills the cat. The sealing is perfect, and we cannot observe the cat’s state from the 
outside at all.
When we open the box to observe the cat’s state, we get to know whether the cat is dead or alive. 
Then, here is a question; what is the cat’s state in the sealed box before opening ?

Answer #1: The cat is either alive or dead. It is determinative though not observed.
Answer #2: The cat may be alive and dead.

We do not know which, thus it can be alive and dead. Both is possible.

Quantum mechanics adopts A2; the cat in the box is alive and dead, which is expressed as

deadalive

●●● ●Cat in the box = ＋×a ×b Quantum mechanical superposition state

where, a and b are coefficients representing the probabilities (not directly, as described later).

When we open the box and look at the cat, we find that the cat is dead or alive (either one of them). 

●●● ●Cat in the box = ＋×a ×b

observation

●●● ●Cat in the box = or

(probabilistic)

(deterministic)
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classical mechanics quantum mechanics

The position cannot be identified.
Instead, the probability 
distribution is  given.

The position is determined
observation

In quantum mechanics,
- A physical state is probabilistic; a state can be plural conditions simultaneously.
- A probabilistic state changes to be deterministic when observed.

The point in the above story is; “a physical state is probabilistic.”
For example, an electron confined in a small area is;

BS

Single-photon state through a beam splitter  

Suppose that an optical pulse of one-photon energy is incident onto a beam splitter (BS).

or

When we measure the light energy at the BS outputs, one photon is detected at either one of the two 
output ports, not both because a photon is the minimum unit of the light energy.



3Here is a question: “What is the photon state just after the beam splitter (before detection) ?”

?
?

This situation is similar to the cat in the box in the previous section.
The quantum mechanical answer is 
“the photon is a superposition of a photon at the transmission port and that at the reflection port”.

The photon after the beam splitter = (ref.)  (trans.) ×+× ba

SW The photon position looks random, 
but it is deterministic in principle. 

or

not superposition state.

Note
A state should not be deterministic in principle for being “superposition state”.
For example, a photon that is randomly switched according to random numbers is not super-positioned.

Next, let us extend the beam splitting system as below.

A

B t2 t1

t1

t2

BS1

BS2

A photon possibly goes through
1) BS1 → short path → BS2 → port A
2) BS1 → short path → BS2 → port B
3) BS1 → long path → BS2 → port A
4) BS1 → long path → BS2 → port B

Output state =  }) {A, @(photon 1ta×
 }) {B, @(photon 1tb×+

 }) {A, @(photon 2tc×+

 }) {B, @(photon 2td ×+



4Here, we place a glass plate in the longer path.

The photon’s routes are the same as the above. 
However, the output state must be different 
because of the glass plate. 
We want to express this difference.
Therefore, we assume that coefficients as complex 
numbers.

phase shift due to the glass plate

A

B
t2 t1

BS1

BS2

glass plate

Output state =  }) {A, @(photon 1ta×
 }) {B, @(photon 1tb×+

 }) {A, @(photon 2tcei ×+ θ

 }) {B, @(photon 2tdei ×+ θ

Then, the probability of each state is given by the absolute square of its complex coefficient.

probability of (photon@{A, t1}) = |a|2 probability of (photon@{B, t1}) = |b|2

probability of (photon@{A, t2}) = |c|2 probability of (photon@{B, t2}) = |d|2

Note: 1|||||||| 2222 =+++ dcba

- Coefficients of a superposition state are complex numbers.
- The probability of each sub-state is given by the absolute square of its coefficient.  

A

B

BS1

plate

BS2

Next, we reconstruct the above system as below.

A photon possibly goes through
1) BS1 → upper path → BS2 → port A
2) BS1 → upper path → BS2 → port B
3) BS1 → lower path → BS2 → port A
4) BS1 → lower path → BS2 → port B

Output state @A =  1 ×c
×+ 3 c
(photon via route 1)

(photon via route 3)

At port A, the states of (photon via route 1) and (photon via route 3) are indistinguishable.
We do not know whether a photon at port A passed through route 1 or route 3.
Thus, they are merged to one state as

Output state @A =  1 ×c ×+ 3 c(photon via route1) (photon via route3)
 )( 31 ×+= cc (photon@A)



5Then, the probability of a photon being at port A is given by
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The above situation is equivalent to one-photon Young’s interference.

att.

B

A

att. PBS

Polarization state of a photon 
Suppose that light with one-photon energy is incident onto a polarization beam splitter (PBS). 

[Polarization state of light]
The electrical field of lightwave oscillates in a 
plane perpendicular to the propagation direction. 
The manner of the electrical field oscillation in 
the perpendicular plane is called “polarization”.

z

[Polarization beam splitter (PBS)]
An optical device that splits incident 
light into horizontally and vertically 
oscillating components

PBS

(another example of superposition state)
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or

Through the PBS, a photon goes to either one of the two output ports.
In accordance with the function of a PBS, it is reasonable to regard a photon at the 
transmission/reflection ports as a photon in the horizontal/vertical polarization states, respectively. 

PBS PBS

Here is a question; “What is the polarization state of a photon just before the PBS ?”

PBS? Polarization state consists of two 
components, but one photon cannot 
be decomposed.

Answer: a superposition of the horizontally polarized photon and the vertically polarized photon. 

photon state before PBS = ×Hc ×+ Vc(horizontal photon) (vertical photon)

Coefficient {cH, cV} should be consistent with the polarization state before the attenuator. 

att
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Note that the way of expressing the photon polarization state is not unique, as shown below.

att. PBSλ/4

[λ/4 plate]
An optical device that changes the 
polarization state from linear to circular and 
vice versa.

Suppose that a λ/4 plate is placed before a PBS,
and regard {λ/4 + PBS} as one measurement system.

PBSλ/4 PBSλ/4

Because of the λ/4 plate, 
the right circular state definitely goes to one output port, and 
the left circular state definitely goes to the other output port.

On the other hand, 
to which port the photon goes is probabilistic for linearly polarized states.

PBSλ/4 PBSλ/4

The photon polarization state can be regarded as a superpositioned state of the right and left 
circular states.

photon before {λ/4 + PBS}= ×Rc ×+ Lc(right circular state) (left circular state)

In this measurement system, {right circular state, left circular state} work as the same way as 
{horizontal linear state, vertical linear state} in the PBS system.



8Coefficients {cR, cL} are treated in the same way as for variable transformation.

1 1(right-circular photon) (left-circular photon)
2 2

= × − ×

Quantum states are evaluated by probabilities, and the probabilities are given by the absolute 
square of coefficients, and thus (-i) multiplexed onto the whole state does not matter.

Using these relationships,

(photon polarization state)＝ cH×(horizontal photon）＋ cV ×（vertical photon）

cR cL

H
1 1(right-circular photon) (left-circular photon)
2 2

c  = × + × 
 

V
1 1(right-circular photon) (left-circular photon)
2 2

c  + × − × 
 

H V H V(right-circular photon) (left-circular photon)
2 2

c c c c+ −
= × + ×

Whether the photon polarization state is regarded as a superposition of 
{horizontal photon & vertical photon} or {right-circular photon & left-circular photon}
depends on the measurement system.
By the way, a measurement system is used for evaluating a physical quantity, generally speaking.

PBS

a measurement system 
for ｛horizontal or vertical｝

PBSλ/4

a measurement system 
for ｛right circular or left circular｝

1 (horizontal photon) (vertical photon)
2 2

i
× + ×(right-circular state) =

1 (horizontal photon) (vertical photon)
2 2

i
× − ×(right-circular state) =

1 1(right-circular photon) (left-circular photon)
2 2
× + ×(horizontal state) =

1 1{ (right-circular photon) (left-circular photon)}
2 2

i− × − ×(vertical state) =
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How to express a superpositioned state is dependent on a concerned physical quantity.

＝

How to express a quantum state is dependent on a concerned physical quantity.

Complex Hilbert space
The previous sections qualitatively explains what is a quantum state and how to express it.
For quantitatively (or analytically) describing a quantum state, we need some mathematical 
frameworks, which are introduced in this section.

The mathematical stage for quantum states is (complex) Hilbert space, 
which is a generalized version of the Euclid space.
First, we review the Euclid space.
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There exist unit vectors defined as
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- Its length is unity: |ex| =|ey|= 1

- They are orthogonal to each other:

- An arbitrary vector can be expressed by a linear combination of the unit vectors: 

0)( =⋅ yx ee

- A component of a vector is given by the inner product with the corresponding unit vector:

by ==⋅ θsin||)( rre
or

}{)( yxxx ba eeere +⋅=⋅
aba yxxx =⋅+⋅= )()( eeee

bba yxyy =+⋅=⋅ }{)( eeere

ax ==⋅ θcos||)( rre

The Euclid space is a concrete space in the real world.
The Hilbert space is a conceptual space whose framework is similar to that of Euclid space,
in which, however, components of vectors are complex numbers.
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- A vector is expressed as;

- The inner product is defined as below:

- The norm, that corresponds to the vector length, is defined as ><=> ψψψ ||

- The orthogonality is defined as: 0| >=< ψϕ >ψ| and           are orthogonal>ϕ|

(|ψ>: ‘ket’)

Components multiplexed from the left side are complex conjugate. With this definition,

（ci: complex number）

number, real positive a is  ||||| 2
2

2
1 cc +>=< ψψ

which is consistent with the concept that the inner product of a vector and itself is 
the square of the length of the vector. 

Similarly to the Euclid space, unit vectors φi are defined, which are called “basis”.

- Its norm is unity: 1| =>iφ

- They are orthogonal to each other: <φi|φj> = 0 
<φi|φj> = δij (Kronecher’s delta)

- An arbitrary vector is expressed by a linear combination of the basis vectors

- A coefficient of a linear combination is given by the inner product with its basis vector.

<φi|φj> = δij

In other words, a space is formed by basis vectors.

The inner product of |𝜓𝜓> =

𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑁𝑁

 and |𝜑𝜑> =

𝑑𝑑1
𝑑𝑑2
⋮
𝑑𝑑𝑁𝑁

 is <𝜑𝜑|𝜓𝜓> = 𝑑𝑑1∗𝑐𝑐1 + 𝑑𝑑2∗𝑐𝑐2 + ⋯+ 𝑑𝑑𝑁𝑁∗ 𝑐𝑐𝑁𝑁

|𝜓𝜓 >=

𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑁𝑁

𝜓𝜓 >= 𝑐𝑐1 𝜙𝜙1 > +𝑐𝑐2|𝜙𝜙2 > +⋯+ 𝑐𝑐𝑁𝑁|𝜙𝜙𝑁𝑁 >=

𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑁𝑁

< 𝜙𝜙𝑖𝑖 𝜓𝜓 >=< 𝜙𝜙𝑖𝑖|{𝑐𝑐1 𝜙𝜙1 > +𝑐𝑐2|𝜙𝜙2 > +⋯+ 𝑐𝑐𝑁𝑁|𝜙𝜙𝑁𝑁 >} = 𝑐𝑐𝑖𝑖

In the Hilbert space
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Quantum mechanics utilizes the Hilbert space for expressing a quantum state (superposition state) as;
- A state is expressed by a vector in a Hilbert space, which is called “ket vector” or “ket state” or simply 
“ket”.
- Possible states for a state to take are expressed by basis vectors, which are called “basis states”.
- Coefficients in a linear combination of basis vectors = components of a vector

Ket state

- A photon state after BS:
>+>>= R|  T|| baψ

|T>

|R>

BS









=

b
a

For example;

where the basis is |T>: transmitted photon state
|R>: reflected photon state

- A photon after split and combined:  
>+>>= 11 ,B|  ,A|| tbtaψ

A

B
BS1 BS2

|A, t1>|A, t2>

|B, t1>
|B, t2>>+ 2,A|  tc >+ 2,B|  td



















=

d
c
b
a

where the basis is

|A, t1>: photon at A via the short path
|B, t1>: photon at B via the short path
|A, t2>: photon at A via the long path
|B, t2>: photon at B via the long path

- A photon polarization before PBS:
>+>>= V| H|| VH ccψ

PBSatt.








=

V

H
c
c

where the basis is 

|H>: horizontally polarized photon
|V>: vertically polarized photon



12Bra state
Similarly to mathematical Hilbert spaces, the inner product of two kets is defined for physical states.

This expression of the inner product is rewritten in a matrix form as

The above equation indicates

( )*
2

*
1| cc=<ψ

This <ψ|, which is written in the left side in inner products, is called “bra vector” or “bra state” or 
simply “bra”.
Concretely, a bra is a 1×N matrix that originates from a N-dimensional ket with complex conjugating.

- A quantum state is a probabilistic superposition state.

- A quantum state is expressed by a ket vector in a Hilbert space.

- Basis vectors of a quantum mechanical Hilbert space are states for an observed subject 

possibly to take.

- A ket vector of a quantum state is expressed by a linear combination of basis vectors.

- Coefficients in the linear combination are components of a ket vector.

- The absolute square of a coefficient in the linear combination gives the probability that 

the subject takes the corresponding the basis state.

Summary

In the above, basis vectors forming a Hilbert space are phenomenologically introduced, 
assuming a concrete measurement system.
As physics, however, a general (or conceptual) theoretical framework is desired, which will be 
presented in the following sections.

< 𝜑𝜑|𝜓𝜓 >= 𝑑𝑑1∗𝑐𝑐1 + 𝑑𝑑2∗𝑐𝑐2 + ⋯+ 𝑑𝑑𝑁𝑁∗ 𝑐𝑐𝑁𝑁

|𝜓𝜓 >=

𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑁𝑁

|φ >=

𝑑𝑑1
𝑑𝑑2
⋮
𝑑𝑑𝑁𝑁

< 𝜓𝜓|𝜑𝜑 >= 𝑐𝑐1∗𝑑𝑑1 + 𝑐𝑐2∗𝑑𝑑2 + ⋯+ 𝑐𝑐𝑁𝑁∗ 𝑑𝑑𝑁𝑁 = 𝑐𝑐1∗ 𝑐𝑐2∗ ⋯ 𝑐𝑐𝑁𝑁∗
𝑑𝑑1
𝑑𝑑2
⋮
𝑑𝑑𝑁𝑁

The inner product quantitatively indicates the similarity (or overlap) of two physical states.



13Theoretical framework of Hilbert space
A  Hilbert space is formed by basis vectors.
Here is a question; how to mathematically define basis vectors in general ? 
The answer is; a physical quantity is expressed by an operator, whose eigenvectors turn to be basis 
vectors that form a quantum-mechanical Hilbert space.

- Generally, there is a matrix that changes a ket vector to another ket vector as

>=







=








+
+

=















>= ϕψ ||

2

1

222121

212111

2

1

2221

1211
d
d

caca
caca

c
c

aa
aa

A

- Such a matrix is called “operators”, ˆand denoted as  ("  hat").A A

>>= ϕψ ||Â

- A matrix (operator) has eigenvectors and eigenvalues.

|φi>: eigenvector
αi： eigenvalue

†ˆ ˆ- Generally, an operator   has its Hermitian conjugate operator, which is expressed as  .A A
ˆSuppose that  operates on ket | and create another ket state as:A ψ >









+
+

=















>=

222121

212111

2

1

2221

1211|ˆ
caca
caca

c
c

aa
aa

A ψ

the bra of which is written as:

11 1 12 2

21 1 22 2

a c a c
a c a c

+ 
 +  bra ( ) ( ) 










=++ *

22
*
12

*
21

*
11*

2
*
1

*
2

*
22

*
1

*
21

*
2

*
12

*
1

*
11

aa
aacccacacaca

†Â
ÂHermitian conjugate of      , 

which is denoted by  

(in case of a two-dimensional space)

≡

 ˆ|)|ˆ †AA ψψ <>＝

In General, an Hermitian conjugate of      is an operator satisfying the following relationship Â

(bra of

(Intuitively speaking, Hermitian conjugate is complex conjugate of a matrix or an operator)

In a matrix expression, an Hermitian conjugate is a transposed matrix with complex conjugate.










2221

1211
aa
aa Hermitian conjugate











*
22

*
12

*
21

*
11

aa
aa

Â  ˆ †A

>>= iiiA φαφ ||ˆ

The above postulate is explained step-by-step in the following.
As the first step, the theoretical framework of mathematical Hilbert spaces is introduced.



14

AA ˆˆ † =

- An Hermitian operator is an operator whose Hermitian conjugate is identical to the original one:

Hermitian operator: 

|ˆ| *† φφ <=< aA

a = a*

a is a real number

Â

- Eigenvalues of an Hermitian operator are real numbers.

Suppose that     has eigenvalue/eigenvector of {a, |φ>}

Inner product with |φ>
(1)

On the other hand, bra of Eq. (1) is

Inner product with |φ>

><>=< φφφφ ||ˆ| *aA

(Hermitian)

>>= iii aA φφ ||ˆ

(Hermitian operator) (real number)

>>= 111 ||ˆ φφ aA

><>=< 12112 ||ˆ| φφφφ aA

>>= 222 ||ˆ φφ aA （a1 ≠ a2）

|ˆ| 2
*
2

†
2 φφ <=< aA

Suppose there are two sets of eigenvalue/eigenvector

inner product with <ϕ2| bra

|ˆ| 222 φφ <=< aA

Â is an Hermitian operator
a2 is a real number

inner product with |φ1>

- Eigen vectors of an Hermitian operator are orthogonal to each other.

>>= 111 ||ˆ φφ aA

>>= 222 ||ˆ φφ aA












≠ 21

operatorHermitian ˆ

aa
A：

0| 21 >=< φφ

>>= φφ ||ˆ aA

><>=< φφφφ ||ˆ| *† aA

><>=< φφφφ || *aa

><>=< φφφφ ||ˆ| aA

proof

proof
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><>=< 12212 ||ˆ| φφφφ aA

><>=< 122121 || φφφφ aa

0|)( 1221 >=<− φφaa

0| 12 >=< φφ orthogonal

- An arbitrary ket vector is represented by a linear combination of eigenvectors.

|φi>: eigenvector

- A set of eigenvectors whose norm is unity is called “complete orthogonal system”.

where
ijji δφφ >=< |





=
0
1

ijδ
for i = j
otherwise

Kronecker delta1| >=< ii φφ

On the other hand, <φi|φj> = 0 for i ≠ j

>>= iiiA φαφ ||ˆ

- A coefficient in a linear combination of a complete orthogonal system representing a ket vector is 
given by the inner product of the ket vector and the corresponding unit eigenvector. 

ic=

The above postulates or properties indicate that unit eigenvectors of an Hermitian operator 
are nothing else but basis vectors.
Then, a Hilbert space is formed by such basis vectors.
Components of a ket vector in a Hilbert space = Coefficients in a linear combination of basis 
vectors.

Quantum mechanical Hilbert space
The theoretical framework of the above mathematical Hilbert space is utilized to describe quantum 
states.

Ψ >= 𝑐𝑐1 𝜙𝜙1 > +𝑐𝑐2 𝜙𝜙2 > +𝑐𝑐3 𝜙𝜙3 > +⋯ = ∑𝑖𝑖 |𝜙𝜙𝑖𝑖 >

Ψ >= 𝑐𝑐1 𝜙𝜙1 > +𝑐𝑐2 𝜙𝜙2 > +𝑐𝑐3 𝜙𝜙3 > +⋯ = ∑𝑖𝑖 |𝜙𝜙𝑖𝑖 >

}< 𝜙𝜙𝑖𝑖 Ψ >=< 𝜙𝜙𝑖𝑖|{𝑐𝑐1 𝜙𝜙1 > +𝑐𝑐2 𝜙𝜙2 > +𝑐𝑐3 𝜙𝜙3 > +⋯

= 𝑐𝑐1 < 𝜙𝜙𝑖𝑖|𝜙𝜙1 > +𝑐𝑐2 < 𝜙𝜙𝑖𝑖 𝜙𝜙2 > +𝑐𝑐3 < 𝜙𝜙𝑖𝑖 𝜙𝜙3 > +⋯



16A mathematical Hilbert space is formed by unit eigenvectors of an Hermitian operator.
On the other hand, basis states forming a superpositioned state are candidates states, these states are 
determined by a measurement system, and the measurement system is determined by a physical 
quantity to be measured.

(mathematical)

Hermitian operator

unit eigenvectors = basis vectors possible states to be taken = basis states

An arbitrary vector is a linear 
combination of basis vectors.

A quantum state is a superposition of 
basis states.

(quantum mechanical)

physical quantity measurement system

“a physical quantity is expressed by an Hermitian operator,”
“a quantum state is a superpositioned state of eigenstates of a physical quantity operator, and
is expressed by a ket vector in a Hilbert space formed by basis vectors of eigenstates.”

From the above similarity, here are postulates:

In addition,
“eigenvalues of a physical quantity operator are measured values of the physical quantity,”
which corresponds to the fact that eigenvalues of an Hermitian operator are also real numbers.

>>= iii aA φφ ||ˆ

physical quantity operator
(Hermitian operator)

measured value
(real number)

measured state
(eigenvector)

ijji δφφ >=< |

eigenvalue/eigenstate

normalization/orthogonality 
of basis states

quantum state

>Ψ=< |iic φwhere

Ψ >= 𝑐𝑐1 𝜙𝜙1 > +𝑐𝑐2|𝜙𝜙2 > +⋯+ 𝑐𝑐𝑁𝑁|𝜙𝜙𝑁𝑁 >= �
𝑖𝑖=1

𝑁𝑁

𝑐𝑐𝑖𝑖|𝜙𝜙𝑖𝑖 > =

𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑁𝑁



17Probability amplitude & average value of physical quantity
In the previous section where quantum states are qualitatively explained, 
we see that the absolute square of coefficients of basis states represents their probabilities.
This postulate is also applied to the ket vector representation in Hilbert spaces;
When a quantum state expressed by |Ψ> = c1|φ1> + c2|φ2> + ··· + cN|φN>  is measured,
The probability of the state being |φi> is given by |ci|2.

Consequently, the following condition is satisfied, because the total probability should be unity.

1|| 2 =∑
i

ic normalization condition

Consequently, the norm of a ket vector representing a quantum state is;

1||| 2

,

*

,

* =∑=∑>=<∑=
i

iij
ji

jiji
ji

ji ccccc δφφ

A quantum state is a superposition state (= probabilistic state) in general, and thus the result of   
measurement on a quantum state is different for each time, which means that a measured value of a 
physical quantity is stochastic. 
By the way, a static variable is generally characterized by the average and the variance (or the standard 
deviation).
Thus, we would like to theoretically express the average (or the expected value) of measured values of a 
physical quantity.
 Utilizing the postulates of “the absolute square of a coefficient in a linear combination represents 
probability” and “eigenvalues of a physical quantity operator represent measured values,” the mean 
value of a physical quantity can be expressed as:

ˆthe mean value of a physical quantity of a quantum state | : | |AΨ > < Ψ Ψ >

∑ >>=Ψ
j

jjc φ||

>>= jjj aA φφ ||ˆ

Â|Ψ> is expressed by a linear combination of eigenstates of a physical quantity operator     .

)|thproduct wiinner ( >Ψ

∑ >=∑ >>=Ψ
i

iii
i

ii acAcA φφ ||ˆ|ˆ

ijji δφφ >=< |

∑=∑ ><=







∑ >










∑ <>=ΨΨ<

i
ii

ji
ijiij

i
iii

j
jj acaccaccA 2

,

** ||||||ˆ| φφφφ

This is nothing else but the average of measured values.
(aj : measured value, |cj|2 : probability)

)ˆ operate( A

}< Ψ Ψ >= {𝑐𝑐1∗ < 𝜙𝜙1 + 𝑐𝑐2∗ < 𝜙𝜙1 +⋯+ 𝑐𝑐𝑁𝑁∗ < 𝜙𝜙𝑁𝑁 }{𝑐𝑐1|𝜙𝜙1 > +𝑐𝑐2|𝜙𝜙2 > +⋯+ 𝑐𝑐𝑁𝑁|𝜙𝜙𝑁𝑁 >

Here is a terminology; coefficient ci in a linear combination is called “probability amplitude”.



18Product state

quantum b is in state |ψ2>

In the previous sections, a system of one quantum (e.g., one photon) is considered.
We can also regard a system including multiple quanta as one quantum state, 
which is called “product state.”

Each quantum is a superposition state,
i.e., a linear combination of the bases that are eigenstates of a physical quantity operator of interest.
Accordingly, the whole system consisting of multiple quanta is also a superposition of all 
combinations of  the bases of each quantum.

or

1 1 2 2 1 1 2 2{| | | ,  | | | }a bc c d dψ φ φ ψ ϕ ϕ>= > + > >= > + >
Ex.) A system consisting two quanta of two-dimensional superposition

(basis of the whole system)

1 1 1 1 1 2 2 2 2 1 2 1 2 2 2 2| | | | | | | | |c d c d c d c dφ ϕ φ ϕ φ ϕ φ ϕΨ >= > ⊗ > + > ⊗ > + > ⊗ > + > ⊗ >

A product state is expressed as

(AND)

1 2 3| | | |a b cψ ψ ψΨ >= > ⊗ > ⊗ > ⊗

1 2 3| | | |a b cψ ψ ψΨ >= > > > 

1 2 3| , , ,ψ ψ ψ= >

(similar to “xy” instead of “x×y”)

(The order indicates quanta a, b, c, ….)

Theoretical framework for continuous physical quantities 
In the previous sections, physical quantities whose measured values are discrete are considered.
However, there are many physical quantities that have continuous values (e.g., position of a photon).
This section extends the formula for discrete physical quantities to continuous ones.

A quantum mechanical superposition state is expressed by a linear combination of basis states, where 
the absolute square of a coefficient represents the probability of the state being the corresponding 
basis state.
This postulate is extended to continuous quantities as;

∑ >>=Ψ
i

iic φ||

>∫ ⋅>=Ψ aada φψ |)(|

(summation  integral)

|φa>: state giving a measured value of a (basis state)

ψ(a): probability amplitude of a basis state giving a measured value of a

Quantum state for a discrete quantity: 

Quantum state for a continuous quantity:



19Basis states are eigenstates of a physical quantity operator.

>>= aa aA φφ ||ˆ

These basis states are orthogonal to each other and their norms are unity.
Here, the “inner product” must be introduced for defining “orthogonality,” because two states are 
“orthogonal” when their “inner product” is zero.
For discrete systems, the inner product is given by

∑>=ΨΨ<
i

ii cc *'|'

which comes from normal and orthogonal properties of basis states; ijji δφφ >=< |

∑=∑=∑ ><=









∑ >










∑<>=ΨΨ<

i
ii

ji
ijij

ji
ijij

i
ii

j
jj cccccccc *

,

*

,

** ''|'|'||' δφφφφ

The above framework is extended to continuous systems as follows.
First, the inner product for continuous variables is defined as

∫ ⋅>=ΨΨ<
∞

∞−
)()('|' * aada ψψ

*
'

* )'('|)'('' aada aa ψφφψ =∫ ><⋅
∞

∞−

because

∫∫ ><⋅=







∫ >⋅








∫ <⋅>=ΨΨ<

∞

∞−

∞

∞−
aaaa aadadaadaada φφψψφψφψ |)()'(''|)(|)'(''|' '

*
'

*

In order to have the above expression of the inner product, the following equation should be satisfied.

The above equation is made by introducing “Dirac delta,” which is a hyper-function satisfying 
the following equation for an arbitrary function f(x).  

)(')'()'( xfdxxxxf =∫ −
∞

∞−
δ

Dilac delta

0)'( =−xxδ for x’≠x

δ(0) itself is not defined. 

Expressing the inner product of basis states with this function δ(x) as )'(| ' aaaa −>=< δφφ

we have

∫ ⋅=∫∫ −⋅=∫∫ ><⋅>=ΨΨ< )()(')'()()'(''|)()'(''|' **
'

* aadaaaaadadaaadada aa ψψδψψφφψψ

Then, the extension from discrete systems to continuous ones is accomplished. 

( ) ( )* *
' '

ˆ ˆ ˆ| | ' ( ') | ( ) | ' ( ') ( ) | |a a a aA da a A da a da da a a Aψ ϕ ψ ϕ ψ ψ ϕ ϕ< Ψ Ψ >= ⋅ < ⋅ > = ⋅ < >∫ ∫ ∫∫
* *

'

2

' ( ') ( ) | ' ( ') ( ) ( ' )

| ( ) |

a ada da a a a da da a a a a a

a a da

ψ ψ ϕ ϕ ψ ψ δ

ψ

= ⋅ < > = ⋅ −

=

∫∫ ∫∫
∫ ∑>=ΨΨ<

i
ii acA 2|||ˆ| :system discrete

ˆthe mean value of a physical quantity  in a quantum state | is written asA Ψ >With the above expressions, 



20ex) Position of a photon in an attenuated optical pulse.

att

x x1x2

A long rectangular pulse is attenuated to be one-photon energy, and the spatial position of a 
photon in the pulse is measured after the attenuation.

∫ >⋅>=Ψ
2

1

|)(|
x

x
xxdx φψ

)()( tkxiAex ωψ −=

The basis state is a state that a photon is at x: |φx>

The photon state is super-positioned of the basis:

The probability amplitude is quoted from a classical plane wave:
k: propagation const. ω: angular freq.  A: normalization const.

This example of a photon state suggests a concrete expression of the physical quantity operator of 
energy or momentum as follows.
As mentioned in Chap. 1, one photon energy is 2 2 fk

c
π π
λ

= =

: Planck const. for angular freq.
Let us multiply this to probability amplitude ψ .

suggesting that an operator representing energy is written as

Similarly, the momentum of a photon is 

Let us multiply this to probability amplitude ψ .

suggesting that an operator representing momentum is written as

On the other hand, position x does not have such a particular expression as an operator, 
and its operator form is simply 

xx =ˆ

1)(|||||)(|| 12
222 2

1

2

1

=−=∫=∫>=ΨΨ< xxAdxAdxx
x

x

x

x
ψ |A|2 = 1/(x2 - x1)

𝐸𝐸 = ℎ𝑓𝑓 = ℏ𝜔𝜔
ℏ =

ℎ
2𝜔𝜔

𝐸𝐸𝜓𝜓 = ℏ𝜔𝜔𝜔𝜔𝑒𝑒 )𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔 = 𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝑡𝑡
𝜔𝜔𝑒𝑒 )𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔 = 𝑖𝑖ℏ

𝜕𝜕
𝜕𝜕𝑡𝑡
𝜓𝜓

�𝐸𝐸 = 𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝑡𝑡

𝑝𝑝 =
ℎ𝑓𝑓
𝑐𝑐

=
ℎ

2𝜋𝜋
𝑘𝑘 = ℏ𝑘𝑘

𝑝𝑝𝜓𝜓 = ℏ𝑘𝑘𝜔𝜔𝑒𝑒 )𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔 =
ℏ
𝑖𝑖
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜔𝜔𝑒𝑒 )𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔 =
ℏ
𝑖𝑖
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜓𝜓

�𝑝𝑝 =
ℏ
𝑖𝑖
𝜕𝜕
𝜕𝜕𝑥𝑥



21Uncertainty principle

Uncertainty principle: 
“Some physical quantities cannot be simultaneously and precisely determined or measured.”
This famous principle can be described in terms of the theoretical framework presented so far.

A quantum state is generally a superposition state (or probabilistic).
However, in a particular case such that a given state is in an eigenstate of a physical quantity 
operator, the measurement result is deterministic. 

att.

|Ψ> = |H>

PBS: physical quantity is {H, V}

On the other hand, when another physical quantity is measured for the same state, the measurement 
result becomes probabilistic.

PBSλ/4att.
physical quantity is {L, R}

)R|L(|
2

1| >+>>=Ψ

Uncertainty principle

The above considerations indicate that the physical quantity of {H, V} and that of {L, R} cannot be 
simultaneously deterministic.

Here, we can say that 
the physical quantity of {H or V} and that of {R or L} are in an uncertainty relationship.

More generally,
when two physical quantity operators have different sets of eigenstates,
they are in an uncertainty relationship, that is,
these physical quantities are not deterministic simultaneously.

(intuitive image)

x

y

x’
y’

(x, y):    Hilbert space of
(x’, y’): Hilbert space of 

Â
B̂

θ
ycer =

'' sincos yx cc ee ⋅+⋅= θθ

r

deterministic for Â
probabilistic for B̂



22The above criteria of the uncertainty principle, i.e., “whether two physical operators have 
identical eigenstates or not,” can be mathematically described by “commutator,” which is 
defined as

ABBABA ˆˆˆˆ]ˆ,ˆ[ −≡ commutator

0]ˆ,ˆ[ =BA ABBA ˆˆˆˆ = and     are commutative.Â B̂
0]ˆ,ˆ[ ≠BA ABBA ˆˆˆˆ ≠ and     are noncommutative.Â B̂

Using this notation, the following postulate is given.

Â

B̂

>>= φφ ||ˆ aA >>= φφ ||ˆ bB

>>=>= φφφ ||ˆ|ˆˆ abBaAB

>>=>= φφφ ||ˆ|ˆˆ baAbBA

>>= φφ |ˆˆ|ˆˆ BAAB

0ˆˆˆˆ =− BAAB

0]ˆ,ˆ[ ≠BA

Suppose that     and      satisfying                    have an identical eigenstate.Â B̂ 0]ˆ,ˆ[ ≠BA

Suppose     operates on the left equation.

Suppose     operates on the right equation.

contradict to 

An identical eigenstate does not exist.

Therefore,

Uncertainty principle

Then, a next question will be “how uncertain two physical quantities are”.

x

y

x’
y’

The difference is large. The difference is small.
x

x’

y’ y

=

large uncertainty

=

small uncertainty

 0]ˆ,ˆ[ satisfying opearatorsquantity  Physical" ≠BA cannot be deterministic simultaneously.”

“Physical quantity operators satisfying                      have different sets of eigenstates.”.��̂�𝜔, �𝐵𝐵] ≠ 0

proof
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proof

4
|]ˆ,ˆ[|)ˆ()ˆ(
2

22 ><
>≥∆><∆<

BABA

,)ˆ( and)ˆ( as ˆ and ˆ quantities physical of  variancesof averages  theDenoting 2 >∆<>∆< BABA
we have

].ˆ,ˆ[by given  is ˆ and ˆ BABAThe minimum of the product of fluctuations of

0ˆˆˆˆˆ >=<−>>>=<<−>=<∆< AAAAA

><−=∆ BBB ˆˆˆ

0]ˆ,ˆ[ ≠BA

>∆=<>∆<−>∆< 222 )ˆ(ˆ)ˆ( AAA

>∆=<>∆<−>∆< 222 )ˆ(ˆ)ˆ( BBB 0ˆˆˆˆˆ >=<−>>>=<<−>=<∆< BBBBB

><−≡∆ AAA ˆˆˆ

We first introduce operators                    that represent fluctuations of physical quantities
being noncommutative each other as

 ˆ and ˆ BA ∆∆ BA ˆ and ˆ

By the way, fluctuation of a stochastic variable x is generally evaluated by variance (<x2> - <x>2).
Following this criterion, we consider                                            , defined as below, as indexes 
representing fluctuations (or uncertainties) of                

>∆<>∆< 22 ) ˆ( and )ˆ( BA
.ˆ and ˆ BA

BA ˆˆ ∆∆ 、 : Hermitian operator>∆−∆∆+∆>=<< )ˆˆ)(ˆˆ(ˆˆ † BiAtBiAtDD

)ˆˆˆˆˆˆˆˆ()ˆ(

)ˆ()ˆˆ)(ˆˆ()ˆˆ)(ˆˆ()ˆ(

)ˆ()ˆˆˆˆ()ˆ(

22

222

222

>><<−>><<−>><<−><+>∆<=

>∆<+>><−><−<−>><−><−<+>∆<=

>∆+∆∆−∆∆+∆=<

ABABABABitAt

BBBAAitAABBitAt

BBAABitAt

>∆<+>><<+>><<−>><<−><− 2)ˆ()ˆˆˆˆˆˆˆˆ( BBABABABAit

>∆<+><−>∆<=

>∆<+>−<−>∆<=

>∆<+>><<−><−>><<−><+>∆<=

222

222

222

)ˆ(]ˆ,ˆ[)ˆ(

)ˆ(ˆˆˆˆ)ˆ(

)ˆ()ˆˆˆˆ()ˆˆˆˆ()ˆ(

BBAitAt

BABBAitAt

BBABAitABABitAt

Here, in order to evaluate                                    we introduce operator                           ,ˆˆˆ BiAtD ∆−∆=,)ˆ()ˆ( 22 >∆><∆< BA

.ˆˆ of average  theevaluate and †DD

By the way, the following inequality is made in general.

0|ˆ|ˆ ˆ|ˆ ˆ 2†† ≥>Ψ>=ΨΨ>=<< XXXXX

The degree of the uncertainty is expressed also by the commutator as follows.

Thus, 0ˆˆ † >≥< DD 0)ˆ(]ˆ,ˆ[)ˆ(ˆˆ 222 >≥∆<+><−>∆<>=< BBAitAtDD†
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0
)ˆ(4

)ˆ()ˆ(4]ˆ,ˆ[
ˆ2

]ˆ,ˆ[ˆ
22

2222

2
2 ≥













>∆<

>∆><∆<+><
+











>∆<

><
−>∆<

A
BABA

A
BAitA

0
)ˆ(4

)ˆ()ˆ(4]ˆ,ˆ[
ˆ2

]ˆ,ˆ[
22

2222

2 ≥
>∆<

>∆><∆<+><
+











>∆<

><
−

A
BABA

A
BAit

0)ˆ( 2 >≥∆< A

22

2222

2 )ˆ(4
)ˆ()ˆ(4]ˆ,ˆ[

ˆ2
]ˆ,ˆ[

>∆<

>∆><∆<+><
−≥











>∆<

><
−

A
BABA

A
BAit

(The minimum of the left side is 0)

0
)ˆ(4

)ˆ()ˆ(4]ˆ,ˆ[
22

222
≤

>∆<

>∆><∆<+><
−

A
BABA

0)ˆ()ˆ(4]ˆ,ˆ[ 222 >≥∆><∆<+>< BABA

4
]ˆ,ˆ[)ˆ()ˆ(

2
22 ><

−>≥∆><∆<
BABA

4
|]ˆ,ˆ[|)ˆ()ˆ(
2

22 ><
>≥∆><∆<

BABA

2
|]ˆ,ˆ[| ><

≥∆∆
BABAor simply

imginary. a is]ˆ,ˆ[ thus

real, are )ˆ( and )ˆ( ,0ˆˆof inequalityIn 22

><

>∆<>∆<>≥<

BA

BADD†

The minimum fluctuation condition is 
2

|]ˆ,ˆ[| ><
=∆∆

BABA

which is called “minimum uncertainty state”.

ex) Position and momentum of a photon in a plane-wave pulse

att

x

∫ >>=Ψ
2

1

|)(|
x

x
x dxx φψ

)()( tkxiAex ωψ −=with
x1x2
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)ˆˆˆˆ( xppx −

xi
hp
∂
∂

=ˆ

xx =ˆposition operator:

momentum operator:

Suppose that                 is acted on an arbitrary function f(x)

Schrödinger equation

Schrödinger equation
Up to now, we have seen what is a quantum state and how to express it mathematically.
Subsequently, how quantum states evolve in time, i.e., the motion equation of a quantum state, is 
described in this section.

The time evolution of a quantum state in a closed system follows the Schrödinger equation given by 

Ĥ

>>= nnn EH φφ ||ˆ

>>=Ψ nφ|)0(|

where     is an operator representing the energy of a quantum system, called “Hamiltonian,”
and has energy eigenvalues and energy eigenstates.

energy eigenstate

energy eigenvalueHamiltonian

atomic
nucleus

electron

Orbit state of electrons      energy eigenstate
Energy of electrons in an orbit      energy eigenvalue

ex)

Let us see the time evolution in some particular cases. 
In case when a quantum state initially in one of energy eigenstates;

Substitute Ψ(t) into the left side of Schrödinger eq.

Substitute Ψ(t) into the right side.

�𝑥𝑥 �𝑝𝑝 − �𝑝𝑝 �𝑥𝑥 𝑓𝑓 𝑥𝑥 = �𝑥𝑥
ℏ
𝑖𝑖
𝜕𝜕𝑓𝑓 𝑥𝑥
𝜕𝜕𝑥𝑥

−
ℏ
𝑖𝑖
𝜕𝜕
𝜕𝜕𝑥𝑥

𝑥𝑥𝑓𝑓 =
ℏ
𝑖𝑖
𝑥𝑥
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

− 𝑥𝑥
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

+ 𝑓𝑓 = 𝑖𝑖ℏ𝑓𝑓

�𝑥𝑥 �𝑝𝑝 − �𝑝𝑝�𝑥𝑥 = 𝑖𝑖ℏ
[�𝑥𝑥, �𝑝𝑝] = 𝑖𝑖ℏ Δ𝑥𝑥Δ𝑝𝑝 ≥

ℏ
2

𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝑡𝑡

Ψ 𝑡𝑡 >= �𝐻𝐻 Ψ 𝑡𝑡 >

𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝑡𝑡

|Ψ 𝑡𝑡 >= 𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝑡𝑡
𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ|𝜙𝜙𝑛𝑛 >= −𝑖𝑖ℏ

𝑖𝑖𝐸𝐸𝑛𝑛
ℏ
𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ|𝜙𝜙𝑛𝑛 >= 𝐸𝐸𝑛𝑛𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ|𝜙𝜙𝑛𝑛 >

�𝐻𝐻|Ψ 𝑡𝑡 >= 𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ �𝐻𝐻|𝜙𝜙𝑛𝑛 >= 𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ𝐸𝐸𝑛𝑛|𝜙𝜙𝑛𝑛 >

|Ψ 𝑡𝑡 >= 𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ|𝜙𝜙𝑛𝑛 >
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(left) = (right), thus Ψ(t) is a solution of Schrödinger eq.

The state at time t is equal to the initial state with some phase.
Because the overall phase does not matter for the state condition, we can say the quantum system 
holds the  initial state.

∑ >>=Ψ
n

nnc φ|)0(|

A next situation is that the initial state is super-positioned over several energy eigenstates.

Each eigenstate evolves in time as

Therefore,

(left) = (right)is invariant of t.
energy conservation
Ĥ

Substitute Ψ(t) into the left side of Schrödinger eq.

Substitute Ψ(t) into the right side.

|𝜙𝜙𝑛𝑛 >→ 𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ|𝜙𝜙𝑛𝑛 >

|Ψ 𝑡𝑡 >= �
𝑛𝑛

𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ𝑐𝑐𝑛𝑛|𝜙𝜙𝑛𝑛 >

𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝑡𝑡

|Ψ 𝑡𝑡 >= 𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝑡𝑡
�
𝑛𝑛

𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ|𝜙𝜙𝑛𝑛 > = −𝑖𝑖ℏ�
𝑛𝑛

𝑖𝑖𝐸𝐸𝑛𝑛
ℏ
𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ|𝜙𝜙𝑛𝑛 > = �

𝑛𝑛

𝐸𝐸𝑛𝑛𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ|𝜙𝜙𝑛𝑛 >

�𝐻𝐻|Ψ 𝑡𝑡 >= �𝐻𝐻�
𝑛𝑛

𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ|𝜙𝜙𝑛𝑛 > = �
𝑛𝑛

𝑒𝑒− ⁄𝑖𝑖𝐸𝐸𝑛𝑛𝜔𝜔 ℏ𝐸𝐸𝑛𝑛|𝜙𝜙𝑛𝑛 >

birefringent medium (the refractive index is different of |H> and |V>)

)V|H(|
2

1| >+>>=Ψ
}V|H|{

2
1| 00 >+>>=Ψ zkinzkin yx ee

}V|H{|
2

0
0

>+>= ∆ znki
zkin

ee x

A quantum state temporally changes.

Ex)

att.

|Ψ(0)> = |H> >>=Ψ H|| 0 zkinxe



27Heisenberg picture 
There is another way to describe the state evolution, which is called “Heisenberg picture.”

Schrödinger equation can be formally solved as

On the other hand, the expectation value of a physical quantity     is given by

Here, we introduce the following time-dependent operator:

Â

Subsequently, the expectation value is expressed as

>ΨΨ>=<ΨΨ< )0(|)(ˆ|)0()(|ˆ|)( H tAtAt

This expression suggests that an expectation value can be obtained by 
(i) evaluating a time-dependent physical quantity operator           , then
(ii) evaluating the expectation value of              with respect to the initial state |Ψ(0)>. 

)(ˆH tA
)(ˆH tA

For calculating            , the following differential equation is available. 

𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝑡𝑡

Ψ 𝑡𝑡 >= �𝐻𝐻 Ψ 𝑡𝑡 > |Ψ 𝑡𝑡 >= ex p[ − ⁄𝑖𝑖 ℏ �𝐻𝐻𝑡𝑡]|Ψ 0 >

< Ψ 𝑡𝑡 |�̂�𝜔|Ψ 𝑡𝑡 >=< Ψ 0 |ex p[ ⁄𝑖𝑖 ℏ �𝐻𝐻†𝑡𝑡]�̂�𝜔ex p[ − ⁄𝑖𝑖 ℏ �𝐻𝐻𝑡𝑡]|Ψ 0 >

��̂�𝜔H 𝑡𝑡 ≡ ex p[ ⁄𝑖𝑖 ℏ �𝐻𝐻†𝑡𝑡]�̂�𝜔ex p[ − ⁄𝑖𝑖 ℏ �𝐻𝐻𝑡𝑡 (note:                    )�𝐻𝐻† = �𝐻𝐻

Heisenberg equation (of motion)

=
𝑖𝑖
ℏ
�𝐻𝐻𝑒𝑒𝑖𝑖 ⁄�𝐻𝐻 ℏ 𝜔𝜔�̂�𝜔𝑒𝑒−𝑖𝑖 ⁄�𝐻𝐻 ℏ 𝜔𝜔 −

𝑖𝑖
ℏ
𝑒𝑒𝑖𝑖 ⁄�𝐻𝐻 ℏ 𝜔𝜔�̂�𝜔 �𝐻𝐻𝑒𝑒−𝑖𝑖 ⁄�𝐻𝐻 ℏ 𝜔𝜔

=
𝑖𝑖
ℏ
�𝐻𝐻�̂�𝜔H −

𝑖𝑖
ℏ
�̂�𝜔H �𝐻𝐻

ˆ ˆ( / ) ( / )
H

ˆ ˆ( ) { }i H t i H td dA t e Ae
dt dt

−=  

H
ˆˆ[ , ( )]i H A t=



)(ˆH tA

(sometimes called “Heisenberg operator”)

In the Chapter discussing optical amplifier noise, we will fully utilize this Heisenberg equation. 
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