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Abstract

Quantum key distribution (QKD) has been studied for achieving perfectly secure cryptography based
on quantum mechanics. This paper presents a novel QKD scheme that is based on an intensity-
modulation and direct-detection system. Two slightly intensity-modulated pulses are sent from a
transmitter, and a receiver determines key bits from the directly detected intensity. We analyzed the
system performance for two typical eavesdropping methods, a beam splitting attack and an intercept-
resend attack, with an assumption that the transmitting and receiving devices are fully trusted. Our
brief analysis showed that short- or middle-range QKD systems are achievable with a simple setup.

1. Introduction

Quantum key distribution (QKD) has been studied for achieving perfectly secure cryptography. There are two
main kinds of QKD scheme: single-photon-based QKD [1, 2] and continuous-variable QKD (CVQKD) [3, 4].
Single-photon-based QKD has the advantage of enabling long-range key distribution, whereas one disadvantage
is that bulky and expensive single-photon detectors are required. CVQKD avoids this disadvantage by
employing homodyne detection with conventional photodiodes. However, homodyne detection requires
phase-stabilized local light, which is not easy to implement. Based on the above background, we previously
proposed differential-phase-shift-keying (DPSK)-based CVQKD [5, 6]. A phase-modulated coherent pulse train
with moderate power is transmitted, and it is detected using a delay Mach—Zehnder interferometer. Each pulse
simultaneously acts as signal and local lights in this scheme, therefore, this method requires no external local
light.

This paper presents a novel CVQKD scheme, which utilizes direct detection. Intensity-modulated (IM)
coherent light with moderate power is transmitted and directly detected (DD). IM/DD systems are simpler than
DPSK systems, as they do not use a delay interferometer, and have been well-developed in conventional optical
communications. The present scheme achieves the QKD function with a simple setup.

2. Protocol and security

Figure 1 shows a schematic of the proposed IM/DD QKD system, in which the transmitter and receiver are
called Alice and Bob, respectively. The protocol of this system is as follows.

(i) Alice transmits signal light, which is slightly intensity-modulated according to binary random numbers 0
orlaslor (1 + 6)I,atamoderate power level.

(if) Bob directly detects the transmitted light. The measured signal levels are distributed because of noise, as
shown in figure 2. The distribution has two peaks, corresponding to Alice’s binary intensity modulation I
and (1 + 0)I, that overlap with each other because ¢ is small compared to the noise variances.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. IM/DD QKD system. CW is a continuous-wave laser, IM is an intensity modulator, Det is a photo detector, and Threshold is
a comparator. Alice transmits signal light with a power level of or (1 4 §)I based on binary random numbers. Bob receives the light
and estimates the original binary data. When Bob creates bits, he tells Alice of the bit creation time using a classical communication
channel. Hereby, Alice and Bob can share a secret key.

from Alice’s I ---._ _-from Alice’s (1+6)/

Probability

Bob's Received Current Signal

Figure 2. The distribution of Bob’s received current signal.

(iii) Bob sets two thresholds at high and low levels d, and d, respectively, for the signal distribution, as shown in
figure 2. When the measured signal is smaller than the lower threshold dy, he creates bit 0. When the signal
is larger than the higher threshold d;, he creates bit 1. Otherwise, he creates no bit (called bit X).

(iv) Using a classical communication channel, Bob tells Alice the time of the signals from which he created bits.
Alice creates bit 0 or 1 when the corresponding signal intensity is Ior (1 4+ 8)I, respectively. Then, Alice
and Bob share an identical bit string, which can be a secret key.

The security of this protocol is based on the fact that two coherent states with a small amplitude difference
are nonorthogonal to each other. Because of this nonorthogonality, an eavesdropper, Eve, cannot fully
distinguish the transmitted state. She may set thresholds and obtain the key bits as Bob does. However, when she
conducts this measurement while beam-splitting the transmitted signal, for example, the received signals
fluctuate differently in Eve and Bob because the quantum noises of the beam-split lights have no correlation, and
thus, the key bits created by Bob and Eve do not match. Eve may try this measurement of setting thresholds while
intercepting and resending the transmitted signal. However, Eve sometimes (or most of the time) obtains no bit
and is forced to resend randomly intensity-modulated signals, which cause Bob’s bit errors and reveal
eavesdropping. Note that Eve is not allowed to resend nothing when obtaining no bit, because a moderate signal
power is transmitted from Alice to Bob, unlike in single-photon-based QKD, and thus, every signal is expected
to be detected by Bob.

3. System performance evaluation

In this section, we describe a system performance evaluation of the above-described IM/DD QKD method,
assuming specific eavesdropping, a beam splitting attack (BSA), and an intercept-resend attack (IRA). General
attacks are not considered because this paper is proposing a novel QKD protocol featuring practicality, and a
detailed theoretical analysis is beyond the scope of the present paper. We assume throughout this paper that all
the devices Alice and Bob use are fully trusted and work with an arbitrary precision, in order to evaluate the basic
performance of the present protocol.
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3.1. Mutual information
From the information theoretical point of view, the final key creation rate after error correction and privacy
amplification, i.e. the secure key creation rate, Rj; is given by

Ry = Rap — Rag or Rap — Rsg, (1)

where Rap, Rap, and Rpg are the mutual information between Alice and Bob, that between Alice and Eve, and
that between Bob and Eve, respectively.

Which expression, Ry or Rgg, in (1) is employed depends on the method of error correction, i.e.,
bidirectional or reverse reconciliation. In the former case, Eve obtains the error correcting information
exchanged between Alice and Bob, and the final key rate should be Ry = Ryg — max [Rag, Rgg]s0 as to exclude
Eve’s information from the key. In the later case, on the other hand, Eve only obtains the error correcting
information sent from Bob to Alice, and the final key rate should be Ry = Rxp — Rgg so as to exclude Eve’s
information obtained from Bob. Generally, the mutual information between Bob and Eve, Ry, is smaller than
that between Alice and Eve, R,g. Thus, reverse reconciliation offers a higher final key creation rate.

In the following sections, we evaluate the above-described mutual information in our QKD system, utilizing
the following formula [7]:

Pxy(x, y)
_222: ,y)log, — 2 77
Ry " yPX’Y(x Y) ngPX(x)PY(y)

In the above expression, Ryyis mutual information between X and Y, Px(x) and Py(y) are probabilities that X
and Y create x and y, respectively, and Py y (x, y) is the joint probability that X’s bit x coincides with Y’s bit y.
To be specific, we evaluate the joint probability between Alice and Bob, that between Alice and Eve, and that
between Bob and Eve, and then, evaluate the mutual information by substituting them into (2). In practice,
the error correction efficiency should be taken into account in estimating R . In this paper, however, we
assume 100% error correction efficiency in order to evaluate the upper bound of the performance of our
protocol.

X,Y={A, B, E}, )

3.2.Joint probability between Alice and Bob

In this subsection, we derive the joint probabilities between Alice and Bob, and evaluate the mutual information
between them. First, we evaluate the distribution of the photo-current signal at Bob’s detector, which suffers
from some kinds of noise. Here, we assume three kinds of additive white Gaussian noise (AWGN): optical
classical noise, optical quantum noise, and electrical thermal noise. Classical noise is mainly caused by the non-
ideal light source, whose noise power o¢ is proportional to the square of the light intensity. Quantum noise is
inherent in the nature of photons, whose power aé is proportional to the light intensity. Thermal noise is caused
by the thermal motion of electrons in receiver circuits, whose power o is independent of the light intensity.
Taking these noise characteristics into account, the mean value iy and the variance crf0 of Bob’s signal for Alice’s
signal of intensity of I are expressed as

io = O[T’I]Io, (3)

o} = az(aé + aé) + o2

= B(aasznzloz + ba*Tnly + c), 4)

where Bis the base-band width of the receiver, T'is the fiber transmittance, 7 is the quantum efficiency of the
detector, g, b, and c are proportionality constants for the classical, quantum, and thermal noises, respectively,
and a = e/hv (where eis the elementary charge, h is Plank’s constant, and v is the light frequency). Based on the
above expressions, the probability density (p.d.) of Bob’s signal when Alice sends bit 0, py, , (]0), is given by

. . \2
! (i—#)
o P T |

ig

Ppa (il0) = (5)

For Alice’s signal of intensity (1 4+ )1, on the other hand, the mean current signal i, and the current variance
aizo are given by

i =aTn + &I, (6)

o} = B(aa2 T22(1 + 6)? + ba? Tn(1 + 8)I + c). 7
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Table 1. Joint probabilities between Alice and Bob.

Alice’sbita Bob’s bitb Joint probability Py g (a, b)

0 0 i erfc (i(i/%(rio)

C ) el
C

1 0 ierfc(i]\/%:lo)

1 B e R ey
e

Based on these expressions, the p.d. of Bob’s signal when Alice sends bit 1, py, , (i[1), is expressed as

2
20'1'1

Ppa i1 = exp| —

1
8
T @®)

For the above two distributions expressed in (5) and (8), Bob determines two thresholds, alower threshold d, and
ahigher threshold d;. He creates bits 0 or 1 when the detected signal is lower than d or higher than d, respectively.
The conditional probability that Bob creates bit 0 when Alice sends bit 0, Pg4 (0]0), is given by

do
Poa10) = [ pyyaGil0)di

(i — i)
|4
20 io
10 — do
( V2o )
where erfc(x) is the complementary error function expressed as — = f * e~’dt. On the other hand, the

probability that Alice sends bit 0 is Py (0) = 1/2. Thus, the joint probability that Alice’s bit 0 coincides with
Bob’s bit 0, Py 5 (0, 0), is given by

exp| —

_ f ' J_%

Py (0, 0) = Py (0)Pgj4(0]0) = n erfc(io — dO). (10)

The other joint probabilities are similarly derived, which are listed in table 1. By substituting these probabilities
into (2), we obtain the mutual information between Alice and Bob.

For a highly secure key, the numbers of bits 0 and 1 should be equal. Thus, Bob’s probabilities of creating bit
0 and bit 1 must be equal, that s

Pg(0) = Pp(1),
Pg A (0, 0) + Ppa(0,1)=Ppa(l, 1) + PBA(L 0),

1 (i do) ( do) 1 (dl ) (dl—io)
— erfc + — erfc = — erfc erfc . (11)
( V209 V2o 4 V2o V20,
The second terms on both sides, which represent Bob’s error probabilities, are usually much smaller than the
first terms. Therefore, the above equation can be approximated as

1 io — d() 1 dl
— erfc = — erfc 12
4 ( V20, ) ( V2o ) 12
From this equation, we have
oi (. .
dl = —(l() — do) + 1. (13)
Tiy

Alice and Bob choose the system parameters of I, 6, and d so as to achieve the largest final key rate under the
above condition.
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Figure 3. Beam-splitting attack. BS is a beam splitter with a transmittance Tand a reflectance 1 — T'. Lossless is a lossless channel. Eve
detects signal with an ideal direct detector.
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Figure 4. The distribution of Eve’s received light intensity.

3.3. Mutual information in BSA

In fiber transmission systems, the signal power is attenuated in the fiber. Eve can eavesdrop using the lost signal
power by inserting a beam splitter and replacing the fiber with a lossless line, as illustrated in figure 3. This
eavesdropping method is called a BSA. In this subsection, we estimate the joint probability between Alice and
Eve and that between Bob and Eve, and then, obtain the mutual information between them in the case of a BSA.
In the following discussion, Eve is assumed to measure the signal light with an ideal direct detector, which has
100% quantum efficiency and causes no thermal noise. This assumption is made because the bit information is
encoded into the light intensity (or the photon number) with an arbitrary phase, and thus, the use of an ideal
direct detector (or a photon number detector) is the optimal strategy for Eve to measure the signal state.

3.3.1. Joint probability between Alice and Eve

Figure 4 shows the distribution of Eve’s measured light intensity. It has two peaks, corresponding to Alice’s bits 0
and 1, respectively, that partially overlap because of quantum noise and optical classical noise. For this signal
distribution, Eve sets a threshold dj; between the two peaks, and creates bit 0 or 1 when the received signal is
lower or higher than dg, respectively. When Alice launches the light intensity I, into a fiber line with

transmittance T, Eve’s mean light intensity Iy, and it’s variance créo are given by

Iy, = (1 — T)Iy, (14)
of, = B{a(l = T?1? + b(1 — D)I,)}. (15)
When Alice transmits the light intensity (1 + 6)I,, on the other hand, Eve’s mean light intensity Iy, and it’s
variance o are expressed as
I, = (1 — )1 + I, (16)
ol = B{a(l — T + 6 + b1 — T)(1 + 5)10}. (17)

With these parameters and the threshold d, the joint probabilities between Alice and Eve are obtained using a
procedure similar to that used in section 3.2. These probabilities are summarized in the table 2.

To actually calculate the joint probability summarized in table 2, we need to know Eve’s threshold dg, which
is determined as follows. In judging Alice’s bit, Eve sets a threshold at a value at which the tails of the two peaks

5
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Table 2. Joint probabilities between Alice and Eve for BSA.

Alice’s bita Eve’sbite Joint probability Py g (a, e)

0 0 1 1 de — (1 — T
— — —erfc| ———
2 4 V2 og,

0 1 1 erfc dg — (1 — Tl

\/—O'ED

1 0 1| A= Dh —de T)11 dg

4 Uh[

Lol f[a=mn-
2 4 JEUEI

corresponding to Alice’s bits 0 and 1 intersect, as shown in figure 4. This condition is expressed as

2 2
{d — - D) I {d —a -1} )
exXp| — = exp| — .
27 og, P 201250 N 27 oF, P 20%1

From this equation, we obtain Eve’s threshold as:

2
dE = - 3 0123110 - 0'12.3011 + Og,OE, (Il — Io) - (0']251 — 0—]250)11,1 20 . (19)
UEI - UEn O'El

When 01250 ~ 01251, (19) can be approximated as

og, o + og, Iy

dg=(01-T) (20)

Og, + OF,

3.3.2. Joint probability between Bob and Eve
In this subsection, we derive the joint probabilities between Bob and Eve. The deriving proceedure is somewhat
different from that in the previous subsections, because the optical classical noise has a correlation between Bob
and Eve. To take this correlation into account, we separately consider the probability densities caused by the
classical noise and by the quantum noise.

When Alice sends bit 0, the p.d. of her classical light intensity Igs, p, (Iss), is given by

2
Igs — I
N (IBS) = \/2_7T10cA exp 7( BZJZCAO) , (21)

which originates from the optical classical noise with a variance of 02, = Bal?.In the above equation, Ig
fluctuates because of the quantum noise, which has no correlation between the two beam-splitter outputs.
Taking this into account, the conditional probability that Eve creates bit 0 from this signal intensity Ips is given
by

2
' - (-l
PE|A(O‘IBS):deO T o (E (;2 V) dl, (22)

Eq

where Iy is Eve’s received light intensity, and Uéq = Bb(1 — T)Igs ~ Bb(1 — T)I,isher quantum noise. On
the other hand, the conditional probability that Bob creates bit 0 when Alice transmits I is given by

i — T 2

where ig is Bob’s received current signal, and 01230 = azazQ + o2 is his current variance.
From (21)—(23), the joint probability Py g4 (0, 0]0), that Bob’s bit 0 coincides with Eve’s bit 0 when Alice
sends bit 0, is given by
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from Alice’s bit 0 from Alice’s bit 1

-~

Probability

Figure 5. Bivariate normal distribution between Bob and Eve in BSA. The horizontal axis and the vertical axis represent Bob’s
transformed signal, ié, and Eve’s transformed signal, Ié, respectively. The blue surface and green surface correspond to Alice’s bit 0
and bit 1, respectively.

Py a0, 0]0) = f_D:o dIBSPBlA(0|IBS)PE|A(0|IBS)PA(IBS)’

. 2
50 d 1 (13 - OéTUIBs) ,
= f dIBS f — dIB
—00

ex
—oo /2T 0B, P 201230
2
de 1 (I — (1 = T)Is) i
— expd —
—00 N 27 Ogq P 20123q ¢
1 (IBS - 10)2 24)
X ———expy ——————¢-
N 2T oca P ZO'éA

By integrating over Iy and then transforming variables as I = Ig/(1 — T), iy = ig/(aTn),
0% = U%q/(l — T + o0&y, 00 = UZBO/(ozTn)2 + o0&, and

2
O’CA . . . B .
Pyy = , this joint probability is
Jo3, 08 /(@Tn) + 0oty [(1 — TP + ofod, /1 — T)aTn} + oty
rewritten as
= SN - 1
Ppgia (0, 0|0):f1' drgf“”dig
- - 2wox oyl — piﬂ,
2 . 2 .
] (—1) (a—1D) 200 (Il —L)(is — L)
x exp| — 5 + 5 - (25)
2(1 — piy) 0% oy Ox Oy

The joint probabilities of other bit combinations between the three parties (Alice, Bob, and Eve) can be
similarly derived, the results of which are schematically shown in figure 5. The horizontal axis and vertical axis
represent Bob’s transformed signal, if;, and Eve’s transformed signal, I, respectively. The six regions divided by
the thresholds of Bob and Eve represent their bits. We obtain the other joint probabilities by integrating the
distributions in corresponding regions, as in (25).

Applying these results to (2), we can evaluate the mutual information.

3.4. Mutual information in IRA

In this subsection, we discuss the system performance (or mutual information) under an IRA. In this
eavesdropping strategy, Eve intercepts and measures the signal on the transmission line, and then resends a fake
signal to Bob based on the measured result. When Eve conducts this eavesdropping, Bob’s error rate increases,
because she cannot correctly measure and resend the signal; this increase in error rate can reveal the

7
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Figure 6. Intercept-resend attack. Eve randomly switches the transmission line, and detects signal with an ideal direct detector. She
resends a signal corresponding to the result from the detector.

eavesdropping in principle. In practice, however, Bob’s error rate fluctuates and Eve can partially perform the
IRA with an optical switch, masking the eavesdropping-induced bit errors with the bit error rate fluctuation.

3.4.1. Key creation rate

Figure 6 shows the setup of the partial IRA, where Eve occasionally extracts the transmitted signal via an optical
switch, and performs an IRA on the extracted signal. In this eavesdropping strategy, the switching rate ris an
important parameter for Eve to efficiently steal the information. When she employs a high r value, she can
measure alarge fraction of the transmitted signal, but will induce a large error-rate at Bob, and therefore, has a
high risk of being revealed. When employing a low r value, on the other hand, the risk of being revealed is low but
the obtainable information amount is small. Thus, there is an optimum switching rate, which is discussed in the
following.

First, we suppose that the information amount when Eve conducts full-IRA without an optical switch is
given. Using this assumption, we discuss Eve’s strategy for optimizing her switching ratio. The full-IRA
information amount between Alice, Bob, and Eve is discussed in the next subsection. We assume that Bob
creates a sifted key string of # bits, performs error-correction on it, and sets an error-rate threshold ey, for it.
When the error rate of the key string e, calculated from the error-corrected bits, is larger than e,,, Bob discards
the key, considering that Eve has eavesdropped on a large number of key bits. When the error-rate eis lower than
e, on the other hand, he assumes that the amount of leaked information is small, and therefore, performs
privacy amplification on the corrected key.

Here, we discuss the error-rate distribution when the partial IRA is conducted, assuming that y out of n bits
of Bob’s sifted key are intercepted and resent by Eve, and Bob’s and Eve’s original mean error-rates are eg,p, and
eEve> Tespectively. Note that yis a stochastic variable because whether an intercepted-resent signal exceeds the
Bobs thresholds is probabilistic. Unintercepted (n — +) bits have a mean error-rate ¥ equal to ep,p, while the
mean error-rate of the intercepted-resent ybitsis X = epob, + €gve — 2€Bob €Eve. Because these probabilities are
independent of each other, the p.d. of the error-rate in intercepted-resent v bits, pjr(x), and that of the
untouched n — -y bits, p,ir(¥), respectively, follow binomial distributions. With Gaussian approximation, they

are given by
N2
) = exp] =) (26)
R V2T o P 2012R ’
\2
P ()**f:x fm (27)
R \/%UuIR p ZO'fIIR >
2 = - 2 = — . 0 n—r .
where oig = ¥(1 — X)/yand o = 7 (1 — ¥)/(n — ). The total error rate of n bits, z = —x + y,1s
n n
alinear combination of x and y. Thus, the p.d. of the total error rate, pe;;o.(2), is given by
2
(z -z (r'))
perror (Z) = (28)

1
e () T 22 () [

wherer' = v/n,z(r') = + (1 — )y, and o2(+') = (*'XQA - %) + (1 — 7 A — 7)}/n.

Next, we estimate Eve’s net amount of eavesdropping information, Ry, which is determined by two
factors: the information amount that Eve obtains from the intercepted signal and the probability that Bob does
not discard a sifted key. Denoting Ry, as the information amount that Eve obtains from an intercepted signal, the

8
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Table 3. Joint probabilities between Alice and Eve for IRA.

Alice’sbita Eve’sbite Joint probability Py g (a, e)

0 0

0 1 LR
4 \/EUE()
1 0 1 erfc h—dy
4 V2o,
1 1 1 1 L — dg
— — — erfi
2 4 ( V2 ogg

net eavesdropping information amount when -y bits out of n bits of the sifted key are intercept-resent bits is given
by

Roew(7) = 7/n - Ri - P(z < ew), (29)

where P(z < ey,) = f ' (z)dz is the probability of Bob employing a sifted key. In the above expression, y

0 1761'1‘01‘
is a stochastic variable. Assuming that -y follows a binomial distribution with Gaussian approximation
determined by the switching rate r, we obtain the net eavesdropping information amount, R, as

’ 2
[e'9) 1 (1’ — 1’)

R = f {T/R/P z< em } ——eXpy —————— dT/, 30
et —o0 £ ( = ) NoYX P 203, (30)

where af, = r(1 — r)/nisthevariance of ' = ~/n.Itis efficient for Eve to maximize the net eavesdropping
information amount, R,,..g, and Alice and Bob conduct privacy amplification assuming the maximized R, ..

The mutual information between Alice and Bob, on the other hand, is determined by Bob’s error-rate and
the probability that he discards a sifted key because of its large error-rate. Denoting the information amount
shared between Alice and Bob without discarding as R}, the net information amount between them, Ryeeap, is
given by

i 1
R Zf {R/Pzée }-76)( —— = 5dr'. 31
netAB . AB ( th) \/50'/ p 203, (31)

Therefore, the net final key creation rate on IRA, Ry, is given by

AY:
Rnetf:L/‘_O:C[{RI,\B—r’Ré}P(deth)].;eXp _(r r) &

N2mo, 203/

= RnetAB - RnetE- (32)

3.4.2. Joint probabilities in IRA

The previous subsection derives the final key creation rate, assuming that Eve’s information amount Ry, and the
mutual information amount between Alice and Bob Ry, are given. In this subsection, we discuss these
parameters. In IRA, Eve measures all of Alice’s signal in the intercepting stage. Thus, the intensity variance of
Eve’s received signal when Alice sends bit 0, o5, is given by

ot = B(al§ + bly). (33)

The variance when Alice sends bit 1 is similarly determined. Then, the joint probabilities between Alice and Eve
in IRA are obtained using the same procedure as in section 3.3.1, the results of which are summarized in table 3.
Using these joint probabilities, we can estimate Ry.

Regarding Eve as a transmitter, we can estimate the conditional probabilities of Bob’s bits. To deceive Bob,
Eve resends a fake signal with the same properties as Alice’s signal. For such signals, the probabilities of Bob’s bits
when Eve resends bit 0 or 1 are the same as those when Alice sends bit 0 or 1, which are summarized in table 4.

Here, however, there is a difference between Alice and Eve in their bit creation probabilities. Eve’s bit
creation probabilities can be estimated from the joint probabilities between Alice and Eve that are summarized
in table 3. Taking these into account, a joint probability between Eve and Bob in IRA, Py g, is obtained as

9
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Table 4. Conditional probabilities between Eve and Bob for IRA.

Eve’sbita Bob’sbitb Conditional probability Py g (b]e)

0 0 % erfc [%]

0 X 1 — % erfc (i(i/%aio) — % erfc (d\l/f_o:)]
el

1 0 % erfe [il\/%:lo)

1 X 1 7%erfc(dj/;gjl)f % fc(il\/%io)
1 1 % erfc [d\l/i_mi] )

Figure 7. Experimental setup to obtain the noise proportionality constants. CW is a continuous wave laser. VATT is an optical variable
attenuator. OPM is an optical power meter. Det is an optical receiver module. Amp is an electrical amplifier. Spectrum analyzer is an
electrical spectrum analyzer.

Pe(0, 0) = Pe(0) Pyjx(010) = (Pok(0, 0) + Pug(1, 0)) - Pyyi(0]0), (34)

The other joint probabilities are similarly obtained. From these joint probabilities between Eve and Bob, we
obtain Rf, which was given a temporary value in the previous subsection.

The mutual information between Alice and Bob in IRA, Ry, is separable into those with and without Eve’s
interception, Ropap and Rogap, as

Rig = Ronas + (1 — 1) Rogiap. (35)

R, gap is equal to the mutual information without Eve, which is discussed in section 3.1. On the other hand,
Ronas is evaluated based on the joint probabilities between Alice and Bob via Eve. These values are obtained from
the joint probabilities between Alice and Eve summarized in table 3 and Bob’s bit probabilities for Eve’s bits are
summarized in table 4, as
Py 3(0, 0) = Py (0]0) - Pgjg(0]0) - Pg(0) + Pye(0[1) - Pg(0]1) - Pe(1)
P, ,0 P , P , 1) P > 1
_ Pe(0,0) Ppe(0, 0) Py (0) + TAE (0, 1) Pge(0 )PE(l)
Pg(0) Pg(0) Pg(1) Pg(1)
_ Pap(0, 0)Pe(0,0)  Pye(0, P (0, 1)
Pe(0) Px(1)

(36)

Futhermore, we can obtain the error-rates, ep,p, and eg,., from these joint probabilities. From table 1, Bob’s
original error-rate, epqp, i given by
Pr(0, 1) + Pyp(1, 0)

- . (37)
Py (0, 0) + Pap(0, 1) + Pyp(1, 0) + Pap(1, 1)

€Bob

Similarly, Eve’s error-rate, egy., is estimated from table 3.

4, Simulations and discussion

Based on the above discussions, we simulated the system performance of the present scheme for BSA or IRA.
For the simulations, we first experimentally measured the proportionality constants for noise, g, b, and ¢, in

(4), using the setup shown in figure 7. A continuous lightwave generated from a DFB-LD module (NTT

Electronics, NLK1551HSC) was passed through a variable attenuator, and incident to an optical 3 dB coupler,
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le—-10

—— N(I) =GB, (ac® i’ P +ba” nl+c)

o L L
10° 10

Received optical power I (W)

Current noise power N (A? /9.5 GHz)

Figure 8. Measured current noise power. Crosses are measured data and solid line is a fitting curve of N(I) given by (38).

the outputs of which were connected to an optical power meter and an optical receiver module (Sevensix Inc.,
SSR002), respectively. The receiver was composed of a PIN photodiode and a transimpedance amplifier (TIA)
with a 1.2 k) transimpedance. The received signal was amplified, and its noise power was measured by a
spectrum analyzer. We measured the noise power in a frequency range from 500 MHz to 10 GHz for various
optical power levels coupled to the receiver. Besides, the quantum efficiency of the receiver was measured as

1 = 0.62. Figure 8 plots the measured noise power, as a function of the optical received power, by crosses. Also
shown by the solid line in the same figure is a fitting curve of N(I) given by

N = GTZIABeXp(aaznzl2 + ba’nl + c), (38)

where I is the received optical power, Gy = 24 is the TIA current gain, By, = 9.5 GHz is the band-width in
this measurement, and a, b, and c are constants. From this fitting curve, we evaluated the proportional constants
asa = (5.664 + 0.345) x 10716 /Hz, b = (2.288 + 0.052) x 10" W Hz ', and

c = (4.196 £ 0.019) x 10~23A%/Hz. These values would be used in our simulations.

Other parameter values used in the simulations are as follows. The bandwidth of the intensity modulation is
B = 10 GHz and the maximum laser output power is 2 mW. The sifted key length # in IRA is assumed to be
either 1 kbit or 1 Mbit for examining the effect of key length. Bob’s error-rate eg,, is assumed to be less than 0.15.
The fiber transmission loss is 0.20 dB km . Alice’s transmitted signal power I,, the modulation depth 6, Bob’s
bit creation threshold dy, and Bob’s error-rate threshold ey, were chosen so as to maximize the final key creation
rate at each transmission length. The intercepting ratio r was chosen such that Eve obtained the highest net
eavesdropping information Ryeg.

Figure 9 shows the final key creation rate Ryin bidirectionally error-correcting systems. The system
performance under IRA largely depends on the sifted key length: a longer length results in a higher key creation
rate. This is because a longer key-bit length makes the error-rate variance smaller, reducing Eve’s probability to
mask her IRA using error-rate fluctuation. Figure 9 indicates that BSA is much more powerful than IRA in our
present scheme.

Figure 10 shows the final key creation rate Ryin reverse reconciliation systems. Similar to in the above-
described bidirectional system (figure 9), BSA is shown to be stronger than IRA. The possible QKD distance is
longer than that in the bidirectional error-correcting system, and the achievable distance is approximately
90 km. Note that the final key creation rate estimated here assumes 100% error correction efficiency, thus the
practical achievable distance would be shorter than this result. The 90 km achievable distance is moderate or
short, compared to conventional single-photon-based QKD systems [8—11]. These results suggest that the
present scheme is suitable for short- or middle-range QKD systems.

Figure 11 shows the assumed intensity modulation depth 6, used in figures 9 and 10, that maximizes the final
key creation rate for each eavesdropping method. § ranges from approximately 0.5 to approximately 2%. This
small modulation depth may be an issue in practical implementations. When the resolution of the intensity
modulator is not sufficient to realize this preciseness of the modulation depth, the modulation depth fluctuates,
resulting in a large proportional constant for classical noise, i.e., a in (4). Thus, the correlation between Eve and
Bob increases, and the transmission distance decreases. Quantitative analysis on this issue will be required for
practical implementation.
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Figure 9. Final key creation rate for bidirectional error correction.
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Figure 10. Final key creation rate for reverse reconciliation.
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Figure 11. Intensity modulation depth 6 for each eavesdropping method.
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5. Conclusion

We presented a novel CVQKD scheme employing intensity-modulation and simple direct-detection. We
described the setup and the protocol of our QKD scheme, and then, analyzed and calculated its system
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performance for both BSAs and IRAs. The results showed that short- or middle-range QKD is achievable with
our scheme. With the features of use of conventional intensity-modulation/direct-detection technologies, our
scheme is suitable for small- or moderate-size networks such as LANs and MANSs.
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