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Quantum mechanical treatment of a light wave that propagates through an absorptive medium is pre-
sented. Unlike a phenomenological beam-splitter model conventionally employed to describe a traveling
light in a lossy medium, the time evolution of the field operator is derived using the Heisenberg equation
with the Hamiltonian for a physical system, where the light wave interacts with an ensemble of two-
level systems in a medium. Using the obtained time-evolved field operators, the mean values and var-
iances of the light amplitude and the photon number are evaluated. The results are in agreement with
those obtained in the beam-splitter model, giving a logical theoretical basis for the phenomenological
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1. Introduction

Quantum fluctuations or quantum noises are of fundamental
interest in quantum optics, including inherent fluctuations in co-
herent states and squeezed states, vacuum fluctuations, and
quantum-limited noise figures in phase-insensitive or phase-sen-
sitive optical amplifiers. It is well known that quantum properties
of a light wave are affected by propagating loss in a medium.
Conventionally, traveling light in a dielectric medium was quan-
tum mechanically treated with a quantum mechanical version of
the Maxwell's equations that includes a phenomenological noise
field operator or an operator phenomenologically representing an
absorption phenomenon [1-7]. A spatial differential equation of
the light field operator (annihilation operator) was derived from
the quantum mechanical Maxwell's equations, by which quantum
properties of a traveling light was analyzed. A beam-splitter model
was also suggested similar to the spatial differential equation [8-
15], in which a noise field operator is assumed to be overlapped
onto the attenuated light field operator via a beam splitter re-
presenting a loss phenomenon. This beam splitter model has been
widely utilized in considering quantum properties of light wave
propagating in a lossy medium because of its simplicity.

In a beam-splitter model, the in-out relationship of the light
field operator through a loss medium is expressed as [8,15]

A ~A ~A
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with If? + 172 = 1, where @, and @,,, are the field operators at the
input and output of the medium, respectively, (1\vac is the vacuum
field (or noise field) operator, and f and 7 are the amplitude
transmittance and reflectance of a beam splitter, respectively. The
first term in Eq. (1) represents the attenuation of the incident light,
and the second term represents a noise field overlapped with the
incident light caused by a reaction of some loss mechanism. While
this beam-splitter model is convenient and useful, it was phe-
nomenologically presented, not directly derived from the first
principles of quantum mechanics. To the best of the author's
knowledge, a logical derivation from the fundamentals of the
quantum mechanical theory has not been reported.

Based on the above background, this paper presents a quantum
mechanical description of a light wave passing through an ab-
sorptive medium. Interactions between light and an ensemble of
two-level systems are assumed to cause attenuation of a traveling
light, and the space evolution of the light wave state is derived
using the Heisenberg equation with the Hamiltonian for such a
physical system. The results are in agreement with those obtained
in the beam-splitter model, thus providing a theoretical justifica-
tion of the phenomenological beam-splitter model.

2. Theoretical treatment

2.1. Time evolution of the field operator

We consider an absorptive medium, in which traveling light is
attenuated through interaction with an ensemble of two-level
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systems [16]. The Hamiltonian for such a physical system is ex-
pressed as [15]

A= hwaa+2hwm)z’?" +1Zh( aj"} .

j ()

The first, second, and third terms represent the Hamiltonians
for the light field, an ensemble of two-level systems in the med-
ium, and the interaction between the light and the two-level

systems, respectively. Here, 4 and 4" are the annihilation and
creation operators of light, respectively; 7=12> <1 and

=12 > < 1l are the transition operators of a two-level system in
the medium with 12> and I1 > denoting the upper and lower
energy levels, respectively; # is the reduced Planck’s constant; o is
the lightwave angular frequency; #w,, is the energy difference
between the two levels; a; is a proportional constant; and the
subscript j labels the two-level systems.

The time evolution of the field operator and the transition
operators is governed by the Hamiltonian A of the composite
system through the Heisenberg equation:

da 1 A

= =_a, H] —iwd - Y af,

dt lh Z I (3&)
dr
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These equations can be simplified by rewriting the operators as
@ - ame ™ and £ - Abe I

A -
za*” 1(¢u} w)t

(4a)
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Q= GOy — Ampaett = ollaettie, (4b)

where ﬁj = z’%ﬁ; - ﬁ;;’%j is a shorthand notation.
We solve Egs. (4) by employing an iterative approximation.

First, the first-order solutions are obtained by substituting the

initial values {é\( ), ﬁ(o)} into the right-hand side of Eqs. (4):

A
di — _ a*l\(o)e—l(mj a))t
J
a5 (52)
A
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e = ' (5b)

The solutions of these equations are

—l(wj w)t 1 /\(0)

= 'EJ o; mj

- (6a)

0. e 1,00
) =8 - lg————8 11 .
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Next, we substitute these first-order solutions into the right-
hand side of Eq. (4a):
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The solution of this equation is given by
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We assume the interaction time is short and consider the above
expression of d(t) as the solution of Eq. (4a).

2.2. Physical quantities

Physical quantities of a light wave are expressed in terms of
expectation values of a(t) in an initial state of the composite sys-
tem under consideration. The mean amplitude is given by
<a>=< %Iﬁ(t)l%z where ¥, > is an initial state of the compo-
site system of light and medium. Here, we are considering an
absorptive medium, not an amplifying one, and thus, we assume
that all two-level systems are initially in the lower energy states.
Such an initial state can be expressed as

%> = |#0> ® |#)> ©
with

wO> =1 >,

" T (10)
where 1%,® > and 1¥,,(” > denote the initial states of the light
and the medium, respectively. Applying this initial state to the
time-evolved field operator a(t) given by Eq. (8), we find that the
mean amplitude of the light wave at time ¢t is

1 - e 1@ _ g — w)t
<aity>=<a0)><41- Z Iozjl2 5 J s
J (mj — ) Aan
©
where  <a(0) > = < ¥©|a ‘Y’#OB, and <¥9 (O)’\(O”‘&”T(no)>=1,
<Oz "(O) A(O)‘W(OB 0, and <¥#¥ /‘(0)‘5”(05 0 have been used to

obtain the result.

The second term in Eq. (11) includes information of the energy
states in the medium, which can be simplified as follows. First, we
decompose the second term into the real and imaginary parts as

—i(@j-w)t

1-¢€ —i(a)j—w)t

D lay?
]

sin?[(w; — w)t/2]
23 P ———

(@) — w)?
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! (@) — @) T2

j (@) — w) j

Under the condition that the energy states are densely dis-
tributed in the frequency domain, the summation in the real part
can be replaced by an integral, i.e.,
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(13)
where p is the spectrum density of the energy states. Moreover,
under the assumption that the spectral distribution of the energy
states is sufficiently broad, this expression can be further simpli-
fied as

(@ + 2)dQ ~ 2lay

2 /W la(w + .Q)Fw
— o2

5 +o sin?[Qt/2] 5
Py | e = et

where a(@w+£2) and p(w+£2) are taken to be constants, which are
denoted by ap and py, respectively. Note that the above develop-
ment of the equation follows a conventional approach employed
for analyzing light-atom interaction in a laser medium [15]. On the
other hand, under the assumption (w;—w)t»1, the imaginary part
of Eq. (12) can be rewritten as

2 2 sm [(w — w)t] — (a)4 — w)t
;i K (wj — o)’

Z A0l (@ - ey lo®

((u - (u) = ] (Uj - (1). (15)

Then, substituting Egs. (13)—-(15) into Eq. (11), we have

_ 1_(% _; )}z (el 2+int.
<a() > <a(0)>{ (2 in, |t <a0) >e (16)

where a, = 2lag’pyz, 7, = ¥ lajf* (@ — @), and the approximation of
(a¢f2 - in.)t«1 have been used. Eq. (16) is comprehensive and
corresponds to a classical description of traveling light in an ab-
sorptive medium. Using the relationship of z/t=v, where z and v
are the propagation distance and light velocity, respectively, the
above time evolution of the mean amplitude can be translated into
a space evolution, yielding

<a(zg + Az) > = < a(zy) > ez a7)

where a = a,/v, n = #5/v, and 2z, is a spatial position at which the
interaction takes place. Note that the parameter o corresponds to
an attenuation coefficient in a classical expression.

The time evolution of the mean photon number < n(t) > is also
derived from a(t) as follows:

\ 0)F A0)
<n@t) > = < Bl > = < wla' oanly>=<¥®la a 1¥® > < ?f,;,‘”l{l

1-— e—i(m}'—w)t
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<N(Zg + AZ) > = < n(zZg) > €72, 19)

Fluctuations or quantum noises of physical quantities are re-
presented by variances. First, we consider the variance of the
photon number, which is given by 6,2 = <n?> - <n>2 Using
Egs. (8) and (9), the average of the photon number squared is
calculated as

<’ > = < HRGAE > = < A OO 040
1% > = < n(0)? > (1 - 2at) + < n(0)
S 22 |a|21 — COS [wj — w)t]
]

=< n0)y > e 2% 4 < n0) > (1 — e~h, (20)

((uj - cu)2

where higher-order terms are neglected, Eqs. (13) and (14) are used,
and the approximations of 1—ait ~ exp(—a:t) and 1-2at ~exp
(—2ayt) are applied. Using Eqs. (18) and (20), the variance of the
photon number after the interaction with the absorptive medium is

opt) =< n®? > — <nt) * = { <n0?>-<n@©) > }

et 4 < n(0) > (1 - e = gX0)e™>*! + < n(0)
> (1 - e™h, @n

From this equation, the space evolution of the photon number
variance is

—2aAz

62y + AZ) = 62zp)e + < N(zg) > €71 — e, (22)

Next, we consider fluctuations in the light wave amplitude. The
light amplitude is composed of two quadratures, i.e., the real and
imaginary parts or the cosine and sine components, and the am-
plitude fluctuations are usually expressed in terms of fluctuations
in the two quadratures. The operators representing the real and

imaginary parts of the light wave amplitude are given by (a4 + 6T) 2

and (@ - 4")/2i, respectively. However, we modify these expres-
sions as follows in order to simplify the derivation.

The time evolution of the mean amplitude shown in Eq. (16)
indicates that the phase of the light amplitude rotates by #t
through the interaction with the medium. Because a global phase
rotation does not affects physical properties, we can redefine the
field operator to factor out this global phase rotation from the field

operator. In other words, we define b= dexp( — int) as a modified
field operator for considering amplitude fluctuations. The real part
of this field operator is

i(wj—w)t .
Z | |21 — e + (@ — o)t 0,00t
T T m

(mj - a))2

{1 — e — )t 1 -
+

j (@) — )

~ < n0) > [l - z |ozj|2
where A = 4'4 is the photon number operator and higher-order

terms are ignored after the first line. Then, the space evolution of
the mean photon number translated from Eq. (18) is

(wj — )

H =< n0) > (1 — at) = < n(0) > e,
(18)

A AT
b= 202D O _ Ligeine 1 & wenr),

2 (23)
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and its average is

<x(t) > = %{ < a0) > + < a’) > e @2t = < x,0)

> e/t (24)
where Eq. (16) has been used. On the other hand, the average of
the square is

<X](t)2 > =< Xl(O)z > et + %(—1 _ e‘“tt)‘

25)

where the approximations employed in the previous derivations
have been applied. Then, the variance of the real part of the light
amplitude is obtained from Eqgs. (24) and (25) as

o4(t) = < x(t)? > — < x() 3 = < x,(0)

>e o 4 %(1 — e — < x(0)
2 ,—ait _ 2 —apt 1 —apt
> e = gg(0)e” " + Z(l — e, 26)
which can be translated to
— Q. ] — Q.
04(zo + AZ) = 64(zg)e™ ™ + 71-¢ A7), 27

The space evolution of the variance of the imaginary part
Qz = (l/)\ - lIJ\T)/Zi is obtained similarly, yielding

o 1 .
65(z0 + AZ) = 65(zp)e " + Z(l — e, 28)

2.3. Light propagation over a distance in a medium

In the previous section, we discuss time or space evolution
during a short time. For light wave propagating over a distance in a
medium, however, the assumptions in the previous section are not
necessarily satisfied. In addition, the light wave successively in-
teracts with new two-level systems while propagating, the effect
of which is not taken into account in the previous section.
Therefore, we discuss in this section the space evolution of a light
wave propagating over a distance in an absorptive medium.

In order to analyze the above situation, we divide a light pro-
pagation distance in the medium into small segments, and assume
that the time evolution of the field operator derived in the pre-
vious section, i.e., a(t) given by Eq. (8), is applicable in each seg-
ment. In each segment, the two-level systems are assumed to be
initially at the lower energy states as expressed in Eq. (10). This
assumption simulates the situation that the traveling light suc-
cessively interacts with new two-level systems in each segment.

Under the above assumptions, using Eq. (17), the mean am-
plitude at the end of the kth segment is expressed as

<Az, ;) > = < a(z,) > e"e2+insz, 29)

where z; is a spatial position at the input of the kth segment, and
Az is the length of one segment. Iteratively applying the above
equation to each successive segment of the whole propagation
distance in the medium, we obtain the mean amplitude at the
output of the medium as

<AZyy) > = < Azy) > U2 = < qzy )

> 62(—(1/2+1V1)AZ = =< a(Zin) > e(—(1/2+i11)l_' (30)

where z;; and z,, are the position of the input and output of the
medium, respectively, N is the number of segments, and
L = N x Az is the propagation distance. Similarly, the mean photon
number at the output of the medium is obtained by using Eq. (19),
yielding

—alAz

N(Zgy) > = < N(zy) > €7 = oo = < n(z) > e~ @31)

Egs. (30) and (31) are in agreement with the classical expres-
sions for the amplitude and intensity of traveling light,
respectively.

Similarly, the variance of the photon number at the output of
the medium is obtained by using Egs. (22) and (31):

2 2 —2aA,
05 (Zoup) = o (Zy)e " ?

> e (] - g% = {anz(zN_l)e’z"“ + < fizy_y)

+ < n(zy)

_ _ _ A
> e aAZ(—l _e aAZ)}e 2aAz + < n(ZN,])

—4aAz

> e 22(1 — @77 = 62z e i 4 < fizy_ )

> e*ZaAZ(l _ e*ZaAZ)

—2al

= 62zpe~t + < n(z,) > e (1 — e, (32)

Moreover, the variance of the quadrature of the amplitude is
found by using Eq. (27) and the result is

—a 1 — .
oaZowr) = oz + Z(l - e ™)

{0)(21(ZN_1)eaAZ + %(1 _ eaAZ)}eaAZ + %(1 _ efaAZ)

2 1 —a —a
= o}(zy_pe 2% 4 Z(1 -1 + e %) = 6A(zy_p)

n

—aA, —kaA. 2
—e a Z) Z e aldzZ — Gx](zin)
k=0

e—(n+1)aAz + l(]

—al 1

e =1 - ey,
+4( )

(33)

The expression for the variance of the quadrature oy,? is similar
to this expression.

Egs. (32) and (33) indicate well-known quantum noise prop-
erties of a light wave suffering from propagation loss, as follows.
When the incident light is in a coherent state, for example, the
initial variance of the photon number equals to the mean photon
number, i.e., ¢,%(zin)= <n(ziz) >. Then, from Egs. (32) and (31),
the output variance is

—2al.

X Zout) = < N(Zjy) > €720 + <z > e 1 el =<nizy>. (34)

The variance of photon number still equals to the mean photon
number at the medium output. As for the light wave amplitude,
the input variance of the quadrature X, in a coherent state is
ox1%(zin)=1/4, and, from Eq. (33), its output variance is
04 Zout) = %e"’L + %(1 —ehy = % 35)

This equation shows that the variance of the quadrature )'?1 ina
coherent state is constantly 1/4, regardless of propagation loss.

When a quadrature-squeezed state is incident, for another ex-
ample, the input variances of the two quadratures are oy 2(zin)=
e~ /4 and ox,%(zin)=e%%/4, where s is the squeeze parameter [15].
From Eq. (33), the output variances are

1 o w1 L

O'le(zout) = Ze ek 4 Z(l —€ L), (36a)
1o, 1 »

05 Zout) = Zezs.e Ly 21— b. (36b)

These expressions indicates that the variances changes from
e*%[4 to 1/4 as the quadrature-squeezed light propagates through
an absorptive medium, suggesting that the squeezed state col-
lapses to a coherent state as a result of medium loss. This is also a
well-known quantum noise property of a light wave.
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3. Discussion

In this section, we discuss how the present study is related to
the conventional beam-splitter model [8-15]. In the beam-splitter
model, the time evolution of the field operator is given by Eq. (1).
The vacuum field operator é\vac appearing in that equation satisfies

A AT AT A A AT
<Ayge > = < Uyge > = < Aygelyg > =0 and [avac, avac] =1, and thus

we have
<ﬂ/1\vac >=0, 373
<) (70 > = 0, (37b)
and

N N R 2
<(ravac)(ravacf > = ‘T‘ =1- ’t‘ . (370)

On the other hand, time evolution of the field operator in the
present treatment is given by Eq. (8). Let us consider the second
term in Eq. (8), i.e.,

—l((uJ w)t _ 1/\(0)

—lz j a)-— — 71 .

@

For an initial state given by Eq. (10
related to this term are

), the averages of operators

—l(m —w)t
<y©® —12 — 1"(0) P
m % wj — @ ’ (38a)
a
T .
1(wj w)t 1 0 . efl(wjfw)t _ 1 0
<‘I’n(10) —lZa ﬁ; ) —IZ a]f*iw > ﬁj( )
J i
PAZE (38b)
and
—i(wj—w)t _ 1 —i(mj—a})t -1 '
0) ; %€ A0 : %€ A0)
<¥n —12 o7 —IZ G ——————n;
J J j )
PO —gtnl-e, (380)

where Eqgs. (13) and (14) and a,=2laglper have been used to de-
rive Eq. (38c). In addition, the average of the first term in Eq. (8) is
— e @~ _ g — @)t A
j
3 ;%

0 1
<#[a”] 1= Y 1o
j (wj - )

>~ < a0) > e<*arl2+i»1[)t' 9

where the calculation procedure for deriving Eq. (16) from Eq. (11)
have been used.

The above expressions suggest that the transmitted signal term
and the reflected vacuum term in Eq. (1) correspond to the first
and second terms in Eq. (8), respectively, and we have

2 o
1 — e7l@j=ot _ l(a) - o)t A(O)

% I )
i (@) - ) (40a)
—i(wj—w)t _
ra,, < — IZ ajfk—e ! ]7/%;0),
j wj— @ (40b)

with If? = exp( — a,t). In other words, the present theoretical
treatment, which is based on the Heisenberg equation for a light-
atom interacting system, provides a logical theoretical basis for the
phenomenological beam-splitter model with the above
correspondences.

4. Summary

This paper presented a quantum mechanical treatment of tra-
veling light that propagates through an absorptive medium. Time
evolution of the field operator was derived using the Heisenberg
equation with the Hamiltonian for a physical system in which a
light wave interacts with an ensemble of two-level systems. The
mean values and variances of the light amplitude and the photon
number were evaluated using the time-evolved field operator in
an initial state of the system. The propagation effect of a light wave
successively interacting with the two-level systems along its path
was also taken into account. The derived results are in agreement
with the conventionally employed phenomenological beam-split-
ter model, providing a justification of the beam-splitter model.
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