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This paper studies quantum noise in parametric amplification under phase-mismatched conditions. The
equations of motion of the quantum-mechanical field operators, which include phase mismatch under
unsaturated conditions are first derived from the Heisenberg equation. Next, the noise figure is evaluated
using the solutions of the derived equations. The results indicate that phase mismatch scarcely affects
noise property in phase-insensitive amplification while it has a notable effect in case of phase-sensitive
amplification.
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1. Introduction

When the signal light propagates through a nonlinear medium
together with strong pump light(s), idler light is generated and the
signal light is amplified, given that certain conditions are satisfied.
This phenomenon is called parametric amplification. A feature of
such amplification is low-noise property [1–6], which is beneficial
for optical communication systems. Especially, phase-sensitive
amplification (PSA), that is a particular type of parametric ampli-
fication in which the signal and idler lights are degenerate, offers a
quantum-limited noise figure (NF) of 0 dB, which realizes noiseless
amplification in principle.

In order to achieve signal amplification via parametric inter-
action, the propagation phases should be relatively matched
among interacting lights, which is called the phase-matching
condition. Thus, previous studies on quantum noise in parametric
amplification assume that the phase-matching condition is sa-
tisfied. The above mentioned noiseless amplification in PSA is
achievable under this condition as well. However, even when the
phase-matching condition is not perfectly satisfied, signal ampli-
fication is still achievable. Nevertheless, there has been no study
on quantum noise under such conditions, to the author's knowl-
edge. Although Refs. [2–4], which refer to the quantum noise in
parametric amplification, present the equations of motion of the
quantum-mechanical field operators including the phase mis-
match, the quantum noise property under phase-mismatched
conditions is not investigated.

With the above background, this paper studies the dependence
of phase mismatch on quantum noise in parametric amplification.
Both phase-sensitive amplification (PSA) and phase-insensitive
amplification (PIA) are treated. First, we derive the equations of
motion of the field operators in parametric amplification using the
Heisenberg equation, which explicitly include the phase mis-
match. Next, using the solutions of the derived equations, the
quantum-mechanical NF is evaluated. The results showed that NF
scarcely depends on the phase mismatch in PIA, as compared with
PSA, in which it is notably affected by the phase mismatch.
2. Theoretical treatment

2.1. Equation of motion

In quantum mechanics, a physical quantity is represented by an
operator, and the behavior of a physical quantity operator follows
the Heisenberg equation with the Hamiltonian of a concerned
physical system. Regarding parametric amplification phenomena,
Refs. [5,6] show the equation of motion of the annihilation op-
erator (which corresponds to the optical field), derived from the
Heisenberg equation, where the phase-matching condition is as-
sumed to be satisfied. Refs. [2,3] show the equation including
phase mismatch, but they are phenomenologically translated from
classical nonlinear coupled-equations, not derived from the Hei-
senberg equation. Ref. [4] presents the equation for the field op-
erator derived from the Heisenberg equation. Unfortunately,
however, linear phase mismatch and self and cross phase mod-
ulations are separately treated, and thus the presented equation is
not formed to straightforwardly investigate the dependence of
quantum noise on the effective phase mismatch that consists of
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the linear phase mismatch and phase-shift due to self and cross
phase modulations.

Therefore in this paper, we first derive the equations of motion
of the field operators in parametric interaction systems including
the effective phase mismatch. The Hamiltonian for a physical
system, in which signal and idler photons are created from pump
light(s), is expressed as [7]

ω ω χ χ^ = ℏ ^ ^ + ℏ ^ ^ + ℏ( ^ ^ − * ^ ^ ) ( )
† † † †

H a a a a i a a a a , 1s s s i i i s i s i

where â and ^†
a are the annihilation (field) operator and its Her-

mitian conjugate (i.e., creation operator), respectively; ω is the
light angular frequency; ℏ is Planck's constant; χ is a proportional
constant including the nonlinear coefficient and the classical
pump light amplitude(s); and subscripts s and i indicate the signal
and the idler, respectively. Using this Hamiltonian, the equations
of motion for the signal annihilation operator âs and the idler

creation operator ^ †
ai are derived from the Heisenberg equation as

ω χ
^

=
ℏ

[^ ^] = − ^ + ^
( )
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Eqs. (2a) and (2b) describe the time-evolution of the operators.
They can be rewritten to describe the space-evolution during
propagation along a nonlinear medium, by using the relationship
of time t and spatial coordinate z (i.e., z¼(c/n)t where c is the light
velocity in the vacuum and n is the refractive index), as

β χ^
= − ^ + ^
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i a

n
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a , 3a
s

s s i
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where β¼(n/c)ω is the propagation constant in the medium. From
these equations, we obtain the following equations by expressing

âs and ^ †
ai as β^ ( ) = ^ ( ) ( − )a z b z i zexps s s and β^ ( ) = ^ ( ) ( )

† †
a z b z i zexpi i i ,

respectively.
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β β
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Here, we assume that the parametric interactions are based on
a third-order nonlinear process, where two pump lights create the
signal and idler photons simultaneously. In such systems, the
coefficient in the above equations is proportional to the pump
light amplitudes of Ap1 and Ap2 as χ( ) ∝n c A A/ p1 p2. With the ap-
proximation of no pump depletion, the pump amplitude can be
expressed as Ap1, p2(z)¼Ap1, p2(0)exp(� iβp1, p2z), and (n/c)χ can be
expressed as (n/c)χ¼κexp[� i(βp1þβp2)z], where κ is a propor-
tional constant including Ap1(0), Ap2(0), and the nonlinear coeffi-
cient. With these notations, Eqs. (4a) and (4b) are rewritten as

κ
^

= ^
( )

β
†

Δdb
dz

b e , 5a
i zs

i

κ
^

= *^
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β

†

− Δdb
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where Δβ¼βsþβi–βp1–βp2 represents the phase mismatch. With
the above mentioned process, we obtain the equations of motion
of the field operators, which include the phase mismatch Δβ, as
shown in Eqs. (5a) and (5b). These equations are equivalent to
classical coupled-equations derived from nonlinear Maxwell's
equations. We derive them from the quantum-mechanical Hei-
senberg equation in this paper.

It is noteworthy here that Δβ in Eqs. (5a) and (5b) includes the
nonlinear phase-shift as well as the linear phase mismatch. In para-
metric amplification, the pump lights are so strong that the refractive
index is shifted due to the self and cross phase modulation effects. The
propagation constants in such a situation are expressed as [8]

( )β
ω

ω ω γ= =
+ ( + )

= + ( + )
( ) ( )
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n n I I
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0
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where n(0) is the linear refractive index; n2 is the nonlinear refractive
index; I is the light intensity; γ is the nonlinear coefficient; P is the
light power; and the signal and idler light powers are assumed to be
sufficiently low for not affecting the refractive index. Using these ex-
pressions, the phase mismatch Δβ is rewritten as

β β γΔ = Δ + ( + ) ( )P P , 7L p1 p2

where ΔβL is the linear phase mismatch given by

β ω ω ω ωΔ = ( + − − ) ( )
( ) ( ) ( ) ( )
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1
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0
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0
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0
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0
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The phase mismatch can be zero as Δβ¼0 by appropriately
choosing the wavelengths and the incident powers of the signal
and pump lights, at which the amplification gain is maximum [4].
However, when the wavelengths and the powers deviate from the
optimum values, the phase mismatch becomes non-zero according
to Eq. (7). Quantum properties under such conditions can be
evaluated by using Eqs. (5a) and (5b) with Eq. (7).

2.2. Phase-insensitive amplification

When the signal and idler lights have different frequencies that sa-
tisfy fp1þ fp2¼ fsþ fi (where fp1, p2, fs, and fi are the pump, signal, and
idler frequencies, respectively), and no idler light is incident, signal
amplification occurs irrespective of its incident phase (i.e., phase-in-
sensitive amplification). The solution of Eq. (5) for such a system is
expressed as

{ }β

κ

^ ( ) = ( ) − (Δ ) ( ) ^ ( )

+ ( ) ( ) ^ ( ) ( )
†

a gL i g gL a

g gL a

out cosh /2 sinh in

/ sinh in , 9

s s

i

where L is the length of a nonlinear medium and

κ β≡ − (Δ ) ( )g /2 . 102 2

In the Heisenberg picture of quantum mechanics, the ex-
pectation value (or mean value) of a physical quantity is given by

oΨ(in)| ^ ( )A out |Ψ(in)4 , where ^ ( )A out is a time-evolved operator
corresponding to the physical quantity, and |Ψ(in)4 is an initial
state of the concerned system. Here, the incident signal light is
assumed to be an ideal monochromatic light (i.e., a coherent state
in terms of quantum mechanics). The initial state corresponding to
such incident condition is expressed as

αΨ( ) > = > ⊗ > ( )in 0 , 11s i

where |04 and |α4 represent the vacuum state and the coherent
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state of mean amplitude α, respectively. Using Eqs. (9) and (11),
the mean amplitude and the mean photon number of the output
signal light are obtained as

{ } ( )β α< Ψ( ) ^ ( ) Ψ( ) > = ( ) − (Δ ) ( ) 12aa gL i g gLAmplitude: in out in cosh /2 sinh ,s
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where ^ ≡ ^ ^†
n a a is the photon number operator, α≡ | |n0

2 is the mean
photon number of the incident signal light, and α α α^ ( )| > = | >a in

and [^ ( ) ^ ( )] =
†

a ain , in 1 are utilized. In Eq. (12b), the first and second
terms represent the amplified signal photon number and the
spontaneously emitted photon number, respectively. The signal
gain G is obtained from Eq. (12b) as

β= ( ) + (Δ ) ( ) ( )G gL g gLcosh /2 sinh . 132 2 2

This expression equals to the conventional expression of the
signal gain in phase-insensitive parametric amplification.

Quantum fluctuations or noises can also be obtained using Eqs.
(9) and (11). In general, fluctuation of variable x is evaluated by the
variance given by s2¼ox24�ox42, where o4 denote the
average. The variances of the two quadrature components of the
output light field, si2 and sq

2, respectively, and that of the output
photon number, sn2, are obtained as
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where n0c1 is assumed. These equations indicate quantum noise
in phase-insensitive parametric amplification under phase-mis-
matched conditions.

Using Eq. (14c), NF can be evaluated. It is defined as NF¼SNR
(in)/SNR(out), where SNR(in) and SNR(out) are the input and
output signal-to-noise ratios, respectively, in terms of the photon
number (or the light intensity). The output SNR in the photon
number is obtained from Eqs. (13) and (14c) as

{ }
{ }

β

β
β

( ) =
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On the other hand, the SNR of a coherent state is employed as
the input SNR in the definition of NF. The mean photon number
and its variance of a coherent state are both n0, and SNR(in)¼{n0}2

/n0¼n0. Thus, the noise figure NF is given by

β
β

= ( ) + (Δ ) ( )
( ) + (Δ ) ( ) ( )
gL g gL
gL g gL

NF
cosh 2 2 /2 sinh
cosh /2 sinh

.
16

2 2

2 2 2

When the parametric gain is sufficiently high, i.e., gLc1, this
expression is approximated as ≈NF 2 (or 3 dB), which equals to
the NF under phase-matched conditions, indicating that the phase
mismatch has little effect towards the noise performance in phase-
insensitive parametric amplification.
2.3. Phase-sensitive amplification

When the pump and signal frequencies satisfy fp1þ fp2¼2fs and
the idler light is degenerate with the signal light as fi¼ fp1þ fp2� fs
¼ fs, parametric amplification becomes dependent on the signal
incident phase (i.e., phase-sensitive amplification). The output of
the signal field operator in such a system is obtained from Eq. (5)
with ^ = ^a ai s as

β

κ

^ ( ) = { ( ) − (Δ ) ( )} ^ ( )

+ ( ) ( ) ^ ( ) ( )
†

a gL i g gL a

g gL a
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s s

s

where Δβ¼2βs�βp1�βp2. Here, κ is a proportional constant in-
cluding Ap1, p2(0) and the nonlinear coefficient, which can be ex-
pressed as κ¼ |κ|exp[i(θp1þθp2þθ0)], where θp1 and θp2 are the
initial phases of the two pump lights, respectively, and θ0 is the
constant phase. In addition, |κ| satisfies Eq. (10), and κ can be ex-
pressed as

κ β= + (Δ ) ( )φg g e1 /2 . 18i2

where ϕ¼θp1þθp2þθ0. By substituting this expression into
Eq. (17), we have
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s

2

Using Eq. (19) and the initial state expressed by Eq. (11), the
mean amplitude and the mean photon number of the signal
output light in phase-sensitive amplification are obtained as
follows:
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where the signal incident amplitude is expressed as
α θ= ( )n iexp0 s with θs being the signal incident phase. The first
and second terms in Eq. (20b) represent the amplified signal
photon number and the spontaneously emitted photon number,
respectively. The phase-sensitive property is indicated in the
above equations. From Eq. (20b), the signal gain is obtained as
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β β
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When the phase synchronization between the pump and signal
is made as 2θs¼ϕ, Eq. (21) becomes

( )β β= ( ) + (Δ ) ( ) + + (Δ ) ( ) 22G gL g gL g gLcosh 2 2 /2 sinh 1 /2 sinh 2 .2 2 2

Using Eqs. (11) and (19), the variances of the two quadrature
components of the light field and the photon number, under the
phase-synchronized condition of 2θs¼ϕ, are also obtained by the
same procedure in the previous subsection as
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where n0c1 is assumed.
Using Eqs. (22) and (23c), NF¼SNR(in)/SNR(out) in the photon

number is obtained as

{ } σ
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/
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4
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24n

0
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When the parametric gain is sufficiently high, this expression is
approximated as

β β

β
≈ + ⋅

(Δ ) + (Δ )
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e g g

g
NF 1

2
/2 1 /2

1 1 /2
.

25
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Eq. (25) suggests that NF in phase-sensitive amplification de-
finitely depends on the phase mismatch Δβ, in contrast to phase-
insensitive amplification.
3. Calculation

We carried out calculations based on the above results. Fig. 1
shows NF and signal gain G as a function of phase mismatch Δβ in
phase-insensitive amplification. NF is almost constant, in-
dependent of the phase mismatch under high-gain and medium-
gain conditions, whereas it decreases slightly as Δβ increases
under a low-gain condition.

Fig. 2 shows NF and signal gain as a function of Δβ in phase-
sensitive amplification. Unlike phase-insensitive amplification, NF
notably depends on Δβ, especially under a high-gain condition,
such that it increases as Δβ increases. This result indicates that it
is important for the phase-matching condition to be satisfied in
order to obtain a low-noise property in phase-sensitive amplifiers.
4. Discussion

The results obtained above, that the noise figure is notably
dependent on the phase mismatch in phase-sensitive amplifica-
tion (PSA) while it is not in phase-insensitive amplification (PIA),
are understood as follows.

The noise performance of an amplifier can be indicated by the
spontaneously emitted photon number (which is the source of
quantum noise) relative to the signal gain, i.e., nASE/G with nASE
being the photon number of amplified spontaneous emission
(ASE) and G being the signal gain. From Eqs. (12b) and (20b), the
ASE photon number and the signal gain in parametric amplifica-
tion are given by

{ }β= + (Δ ) ( ) ( )
( )n g gLPIA: 1 /2 sinh , 26aASE
PI 2 2

β= ( ) + (Δ ) ( ) ( )G gL g gLcosh /2 sinh , 26bPI
2 2 2

{ }β= + (Δ ) ( ) ( )
( )n g gLPSA: 1 /2 sinh , 27aASE
PS 2 2

β

β

= ( ) + (Δ ) ( )

+ + (Δ ) ( ) ( )

G gL g gL

g gL

cosh 2 2 /2 sinh

1 /2 sinh 2 , 27b

PS
2 2

2

where the pump powers and the medium length are assumed to
be identical in PIA and PSA, and the phase synchronization is as-
sumed to be made in PSA. The above equations show that, under
these conditions, the ASE photon number is the same in PIA and
PSA while the signal gain is different.

When the phase matching condition is satisfied, i.e., Δβ¼0,
and the signal gain is large, i.e., gLc1, the signal gains is
GPI¼cosh2(gL) ≈e /4gL2 for PIA and GPS¼cosh(2gL)þsinh(2gL) ≈e gL2

for PSA, that is, the latter is four times the former under the
condition that the ASE photon number is identical. In other words,
the ASE photon number in PSA is one fourth of that in PIA, pro-
vided that the signal gain is equal. This consideration concludes
that PSA has better noise performance than PIA. Note here that
ASE light amplitude is squeezed along the signal phase direction in
PSA while that in PIA has uniformly distributed phases. Thus,
whole ASE lights contribute to signal-spontaneous beat noise in
PSA while a half of them does so in PIA. Then, with the condition
that the ASE photon number in PSA is one fourth of that in PIA for
an identical gain, PSA has a 3-dB better NF than PIA, which is a
well-known noise property in parametric amplification.

The above gain characteristic, i.e., PSA has four time higher gain
than PIA for identical pump powers and the medium length, is due
to the fact that signal and idler lights in parametric amplification
are degenerate in PSA. In Eq. (20a) that shows the PSA output
amplitude, the first term of {cosh(gL)� i(Δβ/2g)sinh(gL)}exp(iθs)
corresponds to the signal component, and the second term of
{1þ(Δβ/2g)2}1/2sinh(gL)exp[� i(θs�ϕ)] corresponds to the idler
one. When the phase matching condition is satisfied and the signal
gain is high, they are cosh(gL)exp(iθs)≈(egL/2)exp(iθs) and sinh(gL)



Fig. 1. Signal gain and the NF as a function of phase mismatch Δβ in phase-insensitive amplification. The gain coefficient g and medium length L are chosen in order that the
gain at phase-matched condition G0 is 7.5 dB (a), 16 dB (b), and 30 dB (c). Calculations are performed over a range of Δβ in which g defined in Eq. (10) is positive.
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exp[� i(θs�ϕ)] ≈(egL/2)exp[� i(θs�ϕ)], respectively, indicating
that the two components have a nearly equal amplitude under
these conditions. When the phase synchronization is made in
addition, they have an identical phase. Thus, the two components
with an equal amplitude is summed in phase, and then the total
power is four times the signal component alone. In PIA, on the
other hand, the output light includes only the signal component,
as shown in (12a). Therefore, the PSA gain is four times the PIA
gain when the pump powers and the medium length are identical.

The above consideration is for the phase-matched condition.
When phase mismatch occurs as Δβ≠0, the ASE photon number
and the signal gain under high gain conditions become
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Fig. 2. Signal gain and noise figure as a function of phase mismatch Δβ in phase-sensitive
gain at the phase matched condition G0 is 7 dB (a), 16 dB (b), and 30 dB (c). Calculation
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where Eq. (10) is substituted. The above equations indicate that,
with |Δβ| increasing from 0, the ASE photon number and the
signal gain decrease in a same manner in PIA, while the signal gain
rapidly decreases compared with the ASE photon number in PSA.
Therefore, the noise performance scarcely changes with the phase
mismatch in PIA while it notably degrades in PSA, as shown in
Figs. 1 and 2.

The rapid decrease of the PSA gain with the phase mismatch is
due to phase detuning between the signal and idler components.
Under the phase-matched condition, the single and idler compo-
nents are summed in phase, as described above. When the phase
mismatch occurs, the signal and idler phases are detuned, and
they are not summed in phase anymore, resulting in the gain re-
duction. Thus, the PSA gain reduction is larger than the ASE re-
duction, as the phase mismatch increases. This is an intuitive ex-
planation for the NF degradation shown in Fig. 2.

This paper has mainly considered noise properties in terms of
photon number or light intensity, because the amplifier noise
performance has been traditionally evaluated by NF in intensity. In
the last part of the paper, we briefly mention about amplitude
noise. Its dependence on the phase mismatch is similar to in-
tensity noise, such that the output signal-to-noise ratio scarcely
depends on the phase mismatch in PIA while it notably does in
PSA. An additional property in PSA is that the squeezing ratio of
amplification. The gain coefficient g and medium length L are chosen such that the
s are performed over a range of Δβ in which g defined in Eq. (10) is positive.
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amplitude noise also depends on the phase mismatch. Eqs. (23a)
and (23b) indicate that the variances of the two quadrature
components are different such that the i-component has a larger
variance than the q-component, i.e., the amplitude noise is
squeezed along the i-axis. Under a high-gain condition of gLc1,
these variances are approximated as
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Then, the squeezing ratio is evaluated as
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where Eq. (10) is substituted. This equation indicates that, as the
phase mismatch increases, the squeezing ratio reduces, and the
amplitude noise distribution approaches to be isotropic.
5. Summary

We studied quantum noise in parametric amplification under
phase-mismatched conditions. Equations of motion of the field
operators including the phase mismatch were derived from the
Heisenberg equation, and then, NF was calculated using the so-
lutions of the derived equations. The results showed that phase
mismatch Δβ has little effect in phase-insensitive amplification,
while Δβ has notable effect in phase-sensitive amplification.
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